In this letter, we report the single-molecule conductance properties of a cyano-functionalized perylene-diimide derivative (PDI8-CN2) investigated with gold nano-electrodes. This molecule is of large interest for the fabrication of high-performance and air-stable n-type organic field-effect transistors. Low-bias experiments performed on mechanically controllable break junctions reveal the presence of two different values of the single-molecule conductance, which differ by about two orders of magnitudes. Up to date, this feature was never observed for other perylene-diimide compounds having alternative chemical moieties attached to the basic aromatic core. Theoretical calculations suggest that the highest single-molecule conductance value here observed, comprised between 10(-2) and 10(-3) G(0), is related to a charge transport path directly linking the two cyano groups.
Single-Molecule Break Junctions Based on a Perylene-Diimide Cyano-Functionalized (PDI8-CN2) Derivative
Loredana Parlato;Mario Barra;Antonio Cassinese
2015
Abstract
In this letter, we report the single-molecule conductance properties of a cyano-functionalized perylene-diimide derivative (PDI8-CN2) investigated with gold nano-electrodes. This molecule is of large interest for the fabrication of high-performance and air-stable n-type organic field-effect transistors. Low-bias experiments performed on mechanically controllable break junctions reveal the presence of two different values of the single-molecule conductance, which differ by about two orders of magnitudes. Up to date, this feature was never observed for other perylene-diimide compounds having alternative chemical moieties attached to the basic aromatic core. Theoretical calculations suggest that the highest single-molecule conductance value here observed, comprised between 10(-2) and 10(-3) G(0), is related to a charge transport path directly linking the two cyano groups.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


