Four massive wooden shear walls were analysed via experimental tests and numerical simulations. The specimens differ mainly in the method used to assemble the layers of timber boards: two of them are the well-known Cross-Laminated-Timber panels with glued interfaces, the other two are innovative massive timber panels adopting steel staples or wooden dovetail inserts to connect the layers. Quasi-static cyclic-loading tests were performed for each wall and main results are presented and analysed. A non-linear numerical model was calibrated on experimental results and used to perform non-linear dynamic analyses on specifically designed three-storey shear wall. The methods ensuring a reliable estimation of the intrinsic behaviour factor are presented and the definition of yielding and failure condition is discussed. The intrinsic behaviour factor values were calculated using results from non-linear dynamic analyses. Three limits of failure condition were analysed to estimate the correlated Peak Ground Acceleration and therefore the behaviour factor. A final interpretation of the obtained results is presented and some instructions about the choice of the suitable behaviour factor are given.
Behaviour factor for innovative massive timber shear walls
Polastri A
2015
Abstract
Four massive wooden shear walls were analysed via experimental tests and numerical simulations. The specimens differ mainly in the method used to assemble the layers of timber boards: two of them are the well-known Cross-Laminated-Timber panels with glued interfaces, the other two are innovative massive timber panels adopting steel staples or wooden dovetail inserts to connect the layers. Quasi-static cyclic-loading tests were performed for each wall and main results are presented and analysed. A non-linear numerical model was calibrated on experimental results and used to perform non-linear dynamic analyses on specifically designed three-storey shear wall. The methods ensuring a reliable estimation of the intrinsic behaviour factor are presented and the definition of yielding and failure condition is discussed. The intrinsic behaviour factor values were calculated using results from non-linear dynamic analyses. Three limits of failure condition were analysed to estimate the correlated Peak Ground Acceleration and therefore the behaviour factor. A final interpretation of the obtained results is presented and some instructions about the choice of the suitable behaviour factor are given.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


