Four massive wooden shear walls were analysed via experimental tests and numerical simulations. The specimens differ mainly in the method used to assemble the layers of timber boards: two of them are the well-known Cross-Laminated-Timber panels with glued interfaces, the other two are innovative massive timber panels adopting steel staples or wooden dovetail inserts to connect the layers. Quasi-static cyclic-loading tests were performed for each wall and main results are presented and analysed. A non-linear numerical model was calibrated on experimental results and used to perform non-linear dynamic analyses on specifically designed three-storey shear wall. The methods ensuring a reliable estimation of the intrinsic behaviour factor are presented and the definition of yielding and failure condition is discussed. The intrinsic behaviour factor values were calculated using results from non-linear dynamic analyses. Three limits of failure condition were analysed to estimate the correlated Peak Ground Acceleration and therefore the behaviour factor. A final interpretation of the obtained results is presented and some instructions about the choice of the suitable behaviour factor are given.

Behaviour factor for innovative massive timber shear walls

Polastri A
2015

Abstract

Four massive wooden shear walls were analysed via experimental tests and numerical simulations. The specimens differ mainly in the method used to assemble the layers of timber boards: two of them are the well-known Cross-Laminated-Timber panels with glued interfaces, the other two are innovative massive timber panels adopting steel staples or wooden dovetail inserts to connect the layers. Quasi-static cyclic-loading tests were performed for each wall and main results are presented and analysed. A non-linear numerical model was calibrated on experimental results and used to perform non-linear dynamic analyses on specifically designed three-storey shear wall. The methods ensuring a reliable estimation of the intrinsic behaviour factor are presented and the definition of yielding and failure condition is discussed. The intrinsic behaviour factor values were calculated using results from non-linear dynamic analyses. Three limits of failure condition were analysed to estimate the correlated Peak Ground Acceleration and therefore the behaviour factor. A final interpretation of the obtained results is presented and some instructions about the choice of the suitable behaviour factor are given.
2015
Istituto per la Valorizzazione del Legno e delle Specie Arboree - IVALSA - Sede Sesto Fiorentino
Behaviour factor
Massive timber panels
Seismic design
Timber shear walls
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/303101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 39
social impact