Recent disasters demonstrated the central role of social media during emergencies thus motivating the exploitation of such data for crisis mapping. We propose a crisis mapping system that addresses limitations of current state-of-the-art approaches by analyzing the textual content of disaster reports from a twofold perspective. A damage detection component employs a SVM classifier to detect mentions of damage among emergency reports. A novel geoparsing technique is proposed and used to perform message geolocation. We report on a case study to show how the information extracted through damage detection and message geolocation can be combined to produce accurate crisis maps. Our crisis maps clearly detect both highly and lightly damaged areas, thus opening up the possibility to prioritize rescue efforts where they are most needed.

Crisis Mapping during Natural Disasters via Text Analysis of Social Media Messages

S Cresci;A Cimino;F Dell'Orletta;M Tesconi
2015

Abstract

Recent disasters demonstrated the central role of social media during emergencies thus motivating the exploitation of such data for crisis mapping. We propose a crisis mapping system that addresses limitations of current state-of-the-art approaches by analyzing the textual content of disaster reports from a twofold perspective. A damage detection component employs a SVM classifier to detect mentions of damage among emergency reports. A novel geoparsing technique is proposed and used to perform message geolocation. We report on a case study to show how the information extracted through damage detection and message geolocation can be combined to produce accurate crisis maps. Our crisis maps clearly detect both highly and lightly damaged areas, thus opening up the possibility to prioritize rescue efforts where they are most needed.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di informatica e telematica - IIT -
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people S Cresci it
dc.authority.people A Cimino it
dc.authority.people F Dell'Orletta it
dc.authority.people M Tesconi it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di informatica e telematica - IIT *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 912 *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/20 22:14:06 -
dc.date.available 2024/02/20 22:14:06 -
dc.date.issued 2015 -
dc.description.abstracteng Recent disasters demonstrated the central role of social media during emergencies thus motivating the exploitation of such data for crisis mapping. We propose a crisis mapping system that addresses limitations of current state-of-the-art approaches by analyzing the textual content of disaster reports from a twofold perspective. A damage detection component employs a SVM classifier to detect mentions of damage among emergency reports. A novel geoparsing technique is proposed and used to perform message geolocation. We report on a case study to show how the information extracted through damage detection and message geolocation can be combined to produce accurate crisis maps. Our crisis maps clearly detect both highly and lightly damaged areas, thus opening up the possibility to prioritize rescue efforts where they are most needed. -
dc.description.affiliations CNR-IIT, Pisa, Italy (1); CNR-ILC, Pisa, Italy (2) -
dc.description.allpeople S. Cresci; A. Cimino ; F. Dell'Orletta ; M. Tesconi -
dc.description.allpeopleoriginal S. Cresci(1); A. Cimino (1); F. Dell'Orletta (2); M. Tesconi (1) -
dc.description.fulltext none en
dc.description.numberofauthors 4 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/303899 -
dc.language.iso eng -
dc.relation.conferencedate 02/11/2015 -
dc.relation.conferencename Web Information Systems Engineering-WISE 2015 -
dc.relation.conferenceplace Miami, USA -
dc.relation.firstpage 1 -
dc.relation.lastpage 8 -
dc.relation.numberofpages 8 -
dc.subject.keywords crisis informatics -
dc.subject.keywords Emergency Management -
dc.subject.keywords geoparsing -
dc.subject.keywords social media mining -
dc.subject.keywords Twitter -
dc.subject.singlekeyword crisis informatics *
dc.subject.singlekeyword Emergency Management *
dc.subject.singlekeyword geoparsing *
dc.subject.singlekeyword social media mining *
dc.subject.singlekeyword Twitter *
dc.title Crisis Mapping during Natural Disasters via Text Analysis of Social Media Messages en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee Sì, ma tipo non specificato -
dc.ugov.descaux1 337237 -
iris.orcid.lastModifiedDate 2024/03/02 01:48:12 *
iris.orcid.lastModifiedMillisecond 1709340492293 *
iris.scopus.extIssued 2015 -
iris.scopus.extTitle Crisis Mapping During Natural Disasters via Text Analysis of Social Media Messages -
iris.sitodocente.maxattempts 1 -
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/303899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact