Very high resolution bathymetric map obtained through multibeam echo-sounders data are crucial to generate accurate Digital Terrain Models from which the morphological setting of active volcanic areas can be analyzed in detail. Here we show and discuss the main results from the first multibeam bathymetric survey performed in shallow-waters around the island of Lipari, the largest and the most densely populated of the Aeolian Islands (southern Italy). Data have been collected in the depth range of 0.1-150 m and complete the already existent high-resolution multibeam bathymetry realized between 100 and 1300 m water depth. The new ultra-high resolution bathymetric maps at 0.1-0.5 m provide new insights on the shallow seafloor of Lipari, allowing to detail a large spectrum of volcanic, erosive-depositional and anthropic features. Moreover, the presented data allow outlining the recent morphological evolution of the shallow coastal sector of this active volcanic island, indicating the presence of potential geo-hazard factors in shallow waters.

The first ultra-high resolution Digital Terrain Model of the shallow-water sector around Lipari Island (Aeolian Islands, Italy)

Bosman Alessandro;Chiocci Francesco Latino
2015

Abstract

Very high resolution bathymetric map obtained through multibeam echo-sounders data are crucial to generate accurate Digital Terrain Models from which the morphological setting of active volcanic areas can be analyzed in detail. Here we show and discuss the main results from the first multibeam bathymetric survey performed in shallow-waters around the island of Lipari, the largest and the most densely populated of the Aeolian Islands (southern Italy). Data have been collected in the depth range of 0.1-150 m and complete the already existent high-resolution multibeam bathymetry realized between 100 and 1300 m water depth. The new ultra-high resolution bathymetric maps at 0.1-0.5 m provide new insights on the shallow seafloor of Lipari, allowing to detail a large spectrum of volcanic, erosive-depositional and anthropic features. Moreover, the presented data allow outlining the recent morphological evolution of the shallow coastal sector of this active volcanic island, indicating the presence of potential geo-hazard factors in shallow waters.
2015
multibeam
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 31
social impact