Two capsulated, exopolysaccharide-producing cyanobacteria, Cyanospira capsulata and Nostoc PCC7936, were tested with regard to their metal removal capability by using copper as model metal. The experiments, carried out with the sole cyanobacterial biomass suspended in distilled water and confined into small dialysis tubings, showed that C. capsulata biomass is characterized by the best efficiency in metal removal, with a qmax (maximum amount of copper removed per biomass unit) of 96 ± 2 mg Cu(II) removed per g of protein in comparison with the value of 79 ± 3 of Nostoc PCC7936 biomass. The experimental data obtained with both cyanobacterial biomass best fit the Langmuir sorption isotherm. The biosorption of copper started from the first minutes of contact with the metal and attained the equilibrium state, when no more copper removal was evident, after 5 and 6 hours, for C. capsulata and Nostoc PCC7936, respectively. The best efficiency in Cu(II) removal was obtained at pH 6.1-6.2, while the presence of Mg2+ or Ca2+ reduced copper removal capability of both species to 60 – 70% of their qmax. The results showed that the biomass of C. capsulata and Nostoc PCC7936 possesses a high affinity and a good specific uptake for copper, comparable with the best performances shown by other microbial biomass, and suggest the possibility to use the capsulated trichomes of the two cyanobacteria for the bioremoval of heavy metals from polluted water bodies.

Assessment of the metal removal capability of two capsulated cyanobacteria, Cyanospira capsulata and Nostoc PCC7936

Sili C;
2003

Abstract

Two capsulated, exopolysaccharide-producing cyanobacteria, Cyanospira capsulata and Nostoc PCC7936, were tested with regard to their metal removal capability by using copper as model metal. The experiments, carried out with the sole cyanobacterial biomass suspended in distilled water and confined into small dialysis tubings, showed that C. capsulata biomass is characterized by the best efficiency in metal removal, with a qmax (maximum amount of copper removed per biomass unit) of 96 ± 2 mg Cu(II) removed per g of protein in comparison with the value of 79 ± 3 of Nostoc PCC7936 biomass. The experimental data obtained with both cyanobacterial biomass best fit the Langmuir sorption isotherm. The biosorption of copper started from the first minutes of contact with the metal and attained the equilibrium state, when no more copper removal was evident, after 5 and 6 hours, for C. capsulata and Nostoc PCC7936, respectively. The best efficiency in Cu(II) removal was obtained at pH 6.1-6.2, while the presence of Mg2+ or Ca2+ reduced copper removal capability of both species to 60 – 70% of their qmax. The results showed that the biomass of C. capsulata and Nostoc PCC7936 possesses a high affinity and a good specific uptake for copper, comparable with the best performances shown by other microbial biomass, and suggest the possibility to use the capsulated trichomes of the two cyanobacteria for the bioremoval of heavy metals from polluted water bodies.
2003
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Copper bioremoval
Cyanospira capsulata
Exopolysaccharide
Nostoc PCC7936
Metal bioremoval
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/30406
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact