Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds. In fact, several migrants have advanced their spring arrival date, but whether such advancement has been sufficient to compensate for temporal shift in spring phenophases or, conversely, birds have become ecologically mismatched, is still an unanswered question, with very few exceptions. We used a novel approach based on accumulated winter and spring temperatures (degree-days) as a proxy for timing of spring biological events to test if the progress of spring at arrival to the breeding areas by 117 European migratory bird species has changed over the past five decades. Migrants, and particularly those wintering in sub-Saharan Africa, now arrive at higher degree-days and may have therefore accumulated a 'thermal delay', thus possibly becoming increasingly mismatched to spring phenology. Species with greater 'thermal delay' have shown larger population decline, and this evidence was not confounded by concomitant ecological factors or by phylogenetic effects. These findings provide general support to the largely untested hypotheses that migratory birds are becoming ecologically mismatched and that failure to respond to climate change can have severe negative impacts on their populations. The novel approach we adopted can be extended to the analysis of ecological consequences of phenological response to climate change by other taxa.

Climate warming, ecological mismatch at arrival and population decline in migratory birds

Provenzale Antonello;
2011

Abstract

Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds. In fact, several migrants have advanced their spring arrival date, but whether such advancement has been sufficient to compensate for temporal shift in spring phenophases or, conversely, birds have become ecologically mismatched, is still an unanswered question, with very few exceptions. We used a novel approach based on accumulated winter and spring temperatures (degree-days) as a proxy for timing of spring biological events to test if the progress of spring at arrival to the breeding areas by 117 European migratory bird species has changed over the past five decades. Migrants, and particularly those wintering in sub-Saharan Africa, now arrive at higher degree-days and may have therefore accumulated a 'thermal delay', thus possibly becoming increasingly mismatched to spring phenology. Species with greater 'thermal delay' have shown larger population decline, and this evidence was not confounded by concomitant ecological factors or by phylogenetic effects. These findings provide general support to the largely untested hypotheses that migratory birds are becoming ecologically mismatched and that failure to respond to climate change can have severe negative impacts on their populations. The novel approach we adopted can be extended to the analysis of ecological consequences of phenological response to climate change by other taxa.
2011
climate change
conservation
ecological mismatch
migration
population trend
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 313
social impact