In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the 78 subunits. (C) 2014 Elsevier Ltd. All rights reserved.

Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains

Consiglio Arianna;
2014

Abstract

In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the 78 subunits. (C) 2014 Elsevier Ltd. All rights reserved.
2014
T cell receptor
TRG and TRD genes
Somatic hypermutation
Dromedary
IMGT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact