Here, we propose a stereo pipeline suitable for 3-D wave measurements from fixed and moving platforms. In particular, within the Wave Acquisition Stereo System (WASS) framework, we contemplated a self-calibration technique for a robust estimation of the stereo extrinsic parameters, a fast dense stereo correspondence algorithm, and a two-step correction of the cameras motion. As for other applications, wave information collected by WASS includes synthetic wave parameters (e.g., significant wave height, wave periods, and directions), wavenumber and frequency-direction spectra, spatial distribution of wave elevations, heights, and lengths.
Stereo video imaging of water surface has become an effective instrumentation to gather wind waves 3-D data from small to medium range spatial scales. Indeed, recent applications of stereo techniques provided new insights of space-time distributions of sea wave elevations, small scale wave statistics, and directional wave spectra. Like most photogrammetric applications, an accurate calibration of the optical acquisition machinery is required to provide a low-noise, precise and reliable surface reconstruction adequate to extract meaningful wavy surfaces. However, for practical open field applications, there is a strong interest to provide a calibration procedure apt to be performed in an uncomfortable environment in which it may be unfeasible to take apart or even physically access the device.
TOWARDS AN OPERATIONAL STEREO SYSTEM FOR DIRECTIONAL WAVE MEASUREMENTS FROM MOVING PLATFORMS
Benetazzo Alvise;Barbariol Francesco;Carniel Sandro;Sclavo Mauro
2014
Abstract
Stereo video imaging of water surface has become an effective instrumentation to gather wind waves 3-D data from small to medium range spatial scales. Indeed, recent applications of stereo techniques provided new insights of space-time distributions of sea wave elevations, small scale wave statistics, and directional wave spectra. Like most photogrammetric applications, an accurate calibration of the optical acquisition machinery is required to provide a low-noise, precise and reliable surface reconstruction adequate to extract meaningful wavy surfaces. However, for practical open field applications, there is a strong interest to provide a calibration procedure apt to be performed in an uncomfortable environment in which it may be unfeasible to take apart or even physically access the device.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


