The dynamic model MAGIC was calibrated and applied to 84 lakes in Central Alps to predict the response of water chemistry to different scenarios of atmospheric deposition of S and N compounds. Selected lakes were representative of a wide range of chemical characteristics and of sensitivity to acidification. The most sensitive lakes have already shown in the latest years signs of recovery in terms of pH and ANC. The model well captured the main trends in lake chemical data. According to the model forecast, recovery at sensitive lakes will continue in the next decades under the hypothesis of a further decrease of acidic input from the atmosphere. Results clearly demonstrated the benefits of achieving the emission reductions in both S and N compounds agreed under the Gothenburg Protocol. Nevertheless, besides the achieved reduction of SO4 2- deposition from the peak levels of the 80s, also N deposition should be reduced in the near future to protect alpine lakes from further acidification. The condition of lake catchments with regard to N saturation will probably be the dominant factor driving recovery extent. Beside atmospheric deposition, other factors proved to be important in determining long-term changes in surface water chemistry. Climate warming in particular affects weathering processes in lake catchments and dynamics of the N cycle. Including other factors specific to the alpine area, such as dust deposition and climate change, may improve the fit of experimental data by the model and the reliability of model forecast

Acidification and recovery at mountain lakes in Central Alps assessed by the MAGIC model

Rogora M
2004

Abstract

The dynamic model MAGIC was calibrated and applied to 84 lakes in Central Alps to predict the response of water chemistry to different scenarios of atmospheric deposition of S and N compounds. Selected lakes were representative of a wide range of chemical characteristics and of sensitivity to acidification. The most sensitive lakes have already shown in the latest years signs of recovery in terms of pH and ANC. The model well captured the main trends in lake chemical data. According to the model forecast, recovery at sensitive lakes will continue in the next decades under the hypothesis of a further decrease of acidic input from the atmosphere. Results clearly demonstrated the benefits of achieving the emission reductions in both S and N compounds agreed under the Gothenburg Protocol. Nevertheless, besides the achieved reduction of SO4 2- deposition from the peak levels of the 80s, also N deposition should be reduced in the near future to protect alpine lakes from further acidification. The condition of lake catchments with regard to N saturation will probably be the dominant factor driving recovery extent. Beside atmospheric deposition, other factors proved to be important in determining long-term changes in surface water chemistry. Climate warming in particular affects weathering processes in lake catchments and dynamics of the N cycle. Including other factors specific to the alpine area, such as dust deposition and climate change, may improve the fit of experimental data by the model and the reliability of model forecast
2004
Istituto di Ricerca Sulle Acque - IRSA
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
atmospheric deposition
water chemistry
modelling
trend
nitrogen
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/30480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact