Superparamagnetic iron oxide nanoparticles with a wide size range (2.6-14.1 nm) were synthesized and coated with the amphiphilic poly(amidoamine) PAMAM-C<inf>12</inf> dendrimer. The resulting well dispersed and stable water suspensions were fully characterized in order to explore their possible use in biomedical applications. The structural and magnetic properties of the nanoparticles were preserved during the coating and were related to their relaxometric behaviour. The Nuclear Magnetic Resonance Dispersion (NMRD) profiles were found to be in accordance with the Roch model. The biocompatibility was assessed by means of cell viability tests and Transmission Electron Microscopy (TEM) analysis. The nanoparticles' capability of being detected via Magnetic Resonance Imaging (MRI) was investigated by means of clinical MRI scanners both in water and agar gel phantoms, and in a mouse model.

Design and optimization of lipid-modified poly(amidoamine) dendrimer coated iron oxide nanoparticles as probes for biomedical applications

Menichetti L;Sangregorio C;
2015

Abstract

Superparamagnetic iron oxide nanoparticles with a wide size range (2.6-14.1 nm) were synthesized and coated with the amphiphilic poly(amidoamine) PAMAM-C12 dendrimer. The resulting well dispersed and stable water suspensions were fully characterized in order to explore their possible use in biomedical applications. The structural and magnetic properties of the nanoparticles were preserved during the coating and were related to their relaxometric behaviour. The Nuclear Magnetic Resonance Dispersion (NMRD) profiles were found to be in accordance with the Roch model. The biocompatibility was assessed by means of cell viability tests and Transmission Electron Microscopy (TEM) analysis. The nanoparticles' capability of being detected via Magnetic Resonance Imaging (MRI) was investigated by means of clinical MRI scanners both in water and agar gel phantoms, and in a mouse model.
2015
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
Istituto di Fisiologia Clinica - IFC
BIOLOGICAL APPLICATIONS; MAGNETIC NANOPARTICLES; CONTRAST AGENTS; DENDRIMERS; FUNCTIONALIZATION; PARTICLES; RESONANCE; CELLS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/304875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact