We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations for fluid dynamics in the context of astrophysical simulations, to solve the nonlinear Schrodinger equation in the Madelung formulation. The probability density of the wave function is discretized into moving particles, whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum pressure tensor, for which a robust discretization is found. We demonstrate our numerical method on a variety of numerical test problems involving the simple harmonic oscillator, soliton-soliton collision, Bose-Einstein condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation. Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution, making it well suited to study problems with collapsing solutions.

Numerical solution of the nonlinear Schrodinger equation using smoothed-particle hydrodynamics

Succi Sauro
2015

Abstract

We formulate a smoothed-particle hydrodynamics numerical method, traditionally used for the Euler equations for fluid dynamics in the context of astrophysical simulations, to solve the nonlinear Schrodinger equation in the Madelung formulation. The probability density of the wave function is discretized into moving particles, whose properties are smoothed by a kernel function. The traditional fluid pressure is replaced by a quantum pressure tensor, for which a robust discretization is found. We demonstrate our numerical method on a variety of numerical test problems involving the simple harmonic oscillator, soliton-soliton collision, Bose-Einstein condensates, collapsing singularities, and dark matter halos governed by the Gross-Pitaevskii-Poisson equation. Our method is conservative, applicable to unbounded domains, and is automatically adaptive in its resolution, making it well suited to study problems with collapsing solutions.
2015
Istituto Applicazioni del Calcolo ''Mauro Picone''
hydrodynamics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/305187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 78
social impact