This paper proposes a Neural Network (NN) MRAS (Model Reference Adaptive System) speed observer suited for linear induction motor (LIM) drives. The voltage and current models of the LIM in the stationary reference frame, taking into consideration the end effects, have been obtained. Then, equations of the induced part have been discretized and rearranged so as to be represented by a linear neural network the TLS EXIN neuron, which has been used to compute the machine linear speed on-line and in recursive form. The proposed NN MRAS observer has been tested experimentally on a suitably developed test setup. Its performance has been also compared to the classic MRAS speed observer. © 2011 IEEE.
MRAS speed observer for high performance linear induction motor drives based on linear neural networks
Accetta Angelo;Pucci Marcello;Vitale Gianpaolo
2011
Abstract
This paper proposes a Neural Network (NN) MRAS (Model Reference Adaptive System) speed observer suited for linear induction motor (LIM) drives. The voltage and current models of the LIM in the stationary reference frame, taking into consideration the end effects, have been obtained. Then, equations of the induced part have been discretized and rearranged so as to be represented by a linear neural network the TLS EXIN neuron, which has been used to compute the machine linear speed on-line and in recursive form. The proposed NN MRAS observer has been tested experimentally on a suitably developed test setup. Its performance has been also compared to the classic MRAS speed observer. © 2011 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.