Self-locking analysis in closed kinematic chains is sometimes likened to kinematic singularity analysis, especially when mechanisms are characterized by more than one degree of freedom. Although in singular configurations a mechanism is obviously locked-up since joint constraint reactions and friction forces rise to infinity, this approach identifies only a condition sufficient for self-locking, while the phenomenon actually occurs in a larger domain, the size of which depends on the values of friction coefficients. The paper proposes a definition of self-locking for multi degrees of freedom mechanisms and presents an algorithm for computing the geometrical locus that corresponds to a specific self-locking configuration. This methodology is then demonstrated on a simple parallel kinematic mechanism with two degrees of freedom.
Self-locking analysis in closed kinematic chains
Leonesio M;Bianchi G
2009
Abstract
Self-locking analysis in closed kinematic chains is sometimes likened to kinematic singularity analysis, especially when mechanisms are characterized by more than one degree of freedom. Although in singular configurations a mechanism is obviously locked-up since joint constraint reactions and friction forces rise to infinity, this approach identifies only a condition sufficient for self-locking, while the phenomenon actually occurs in a larger domain, the size of which depends on the values of friction coefficients. The paper proposes a definition of self-locking for multi degrees of freedom mechanisms and presents an algorithm for computing the geometrical locus that corresponds to a specific self-locking configuration. This methodology is then demonstrated on a simple parallel kinematic mechanism with two degrees of freedom.File | Dimensione | Formato | |
---|---|---|---|
prod_56345-doc_11206.pdf
non disponibili
Descrizione: Self-locking Analysis in closed kinematic chains
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.