Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.

Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution

Dimonte Alice;Cifarelli Angelica;Ferro Patrizia;Besagni Tullo;Albertini Franca;Erokhin Victor
2015

Abstract

Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.
2015
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Unconventional computing
Physarum polycephalum
Network
Magnetic particles
Analog control
File in questo prodotto:
File Dimensione Formato  
prod_337686-doc_118519.pdf

solo utenti autorizzati

Descrizione: Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/305537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact