We present a straightforward method for measuring the relative viscosity of fluids via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method are evident when it is adopted for measurements of materials whose availability is limited, such as those involved in biological studies. The method has been validated by direct comparison with conventional bulk rheology methods, and has been applied both to characterise synthetic linear polyelectrolytes solutions and to study biomedical samples.
Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions 'at a glance'
Greco Francesco;
2015
Abstract
We present a straightforward method for measuring the relative viscosity of fluids via a simple graphical analysis of the normalised position autocorrelation function of an optically trapped bead, without the need of embarking on laborious calculations. The advantages of the proposed microrheology method are evident when it is adopted for measurements of materials whose availability is limited, such as those involved in biological studies. The method has been validated by direct comparison with conventional bulk rheology methods, and has been applied both to characterise synthetic linear polyelectrolytes solutions and to study biomedical samples.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.