The properties of two molecular-based magnetic helices, composed of 3d metal Co and Mn ions bridged by nitronyl nitroxide radicals, are investigated by density-functional calculations. Their peculiar and distinctive magnetic behavior is here elucidated by a thorough description of their magnetic, electronic, and anisotropy properties. Metal ions are antiferromagnetically coupled with the radicals, leading to a ferrimagnetically ordered ground state. A strong metal-radical exchange coupling is found, about 44 and 48 meV for Co and Mn helices, respectively. The latter have also relevant next-nearest-neighbor Mn-Mn antiferromagnetic interactions (of ~6 meV). Co sites are characterized by noncollinear uniaxial anisotropies, whereas Mn sites are rather isotropic. A key result pertains to the Co helix: The microscopic picture resulting from density-functional calculations allows us to propose a spin Hamiltonian of increased complexity with respect to the commonly employed Ising Hamiltonian, suitable for the study of finite-temperature behavior, and that seems to clarify the puzzling scenario of multiple characteristic energy scales observed in experiments.

Combined first-principles and thermodynamic approach to M-nitronyl nitroxide (M = Co, Mn) spin helices

Scarrozza M;Barone P;Picozzi S
2015

Abstract

The properties of two molecular-based magnetic helices, composed of 3d metal Co and Mn ions bridged by nitronyl nitroxide radicals, are investigated by density-functional calculations. Their peculiar and distinctive magnetic behavior is here elucidated by a thorough description of their magnetic, electronic, and anisotropy properties. Metal ions are antiferromagnetically coupled with the radicals, leading to a ferrimagnetically ordered ground state. A strong metal-radical exchange coupling is found, about 44 and 48 meV for Co and Mn helices, respectively. The latter have also relevant next-nearest-neighbor Mn-Mn antiferromagnetic interactions (of ~6 meV). Co sites are characterized by noncollinear uniaxial anisotropies, whereas Mn sites are rather isotropic. A key result pertains to the Co helix: The microscopic picture resulting from density-functional calculations allows us to propose a spin Hamiltonian of increased complexity with respect to the commonly employed Ising Hamiltonian, suitable for the study of finite-temperature behavior, and that seems to clarify the puzzling scenario of multiple characteristic energy scales observed in experiments.
2015
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Combined first-principles and thermodynamic approach to M-nitronyl nitroxide (M = Co
Mn) spin helices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/306117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact