This paper presents an accurate thermal characterization of thin-film heaters manufactured on glass substrates. The characterization has been performed on Cr/Al/Cr meandered heaters. Techniques commonly adopted for measuring the temperature coefficient of resistance, the thermal resistance and thermal capacitance in the case of Si-based microheaters have been conveniently modified to consider the fundamentally different thermal parameters of a heater manufactured on glass. To reduce power consumption and thermal capacitance, a grating of 250- $\mu $ m wide trenches, stopped at $80~\mu $ m from the opposite metalized front surface, was manufactured on the back side of the heaters, obtaining an increase of the thermal resistance of about 110% and a decrease of the thermal capacitance of about 65% when the glass is in good thermal contact with a heat sink. The measured values of thermal resistance and time constants on a heat sink and in air have been justified starting from realistic physical considerations. Finally, a novel thermal model suitable for microheaters on glass immersed in air was presented and validated by comparing its predictions with the experimental cooling behavior of the microheater and with the predictions of an exponential model.

Thermal modeling and characterization of a thin-film heater on glass substrate for lab-on-chip applications

Zampolli Stefano
2015

Abstract

This paper presents an accurate thermal characterization of thin-film heaters manufactured on glass substrates. The characterization has been performed on Cr/Al/Cr meandered heaters. Techniques commonly adopted for measuring the temperature coefficient of resistance, the thermal resistance and thermal capacitance in the case of Si-based microheaters have been conveniently modified to consider the fundamentally different thermal parameters of a heater manufactured on glass. To reduce power consumption and thermal capacitance, a grating of 250- $\mu $ m wide trenches, stopped at $80~\mu $ m from the opposite metalized front surface, was manufactured on the back side of the heaters, obtaining an increase of the thermal resistance of about 110% and a decrease of the thermal capacitance of about 65% when the glass is in good thermal contact with a heat sink. The measured values of thermal resistance and time constants on a heat sink and in air have been justified starting from realistic physical considerations. Finally, a novel thermal model suitable for microheaters on glass immersed in air was presented and validated by comparing its predictions with the experimental cooling behavior of the microheater and with the predictions of an exponential model.
2015
Automatic characterization
four-wire measurement
glass microfabrication
lab-on-chip
microheater
thermal capacitance
thermal resistance
thermal time constant
thin-film heater on glass.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/306322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact