Magnetically triggered release from magnetic giant unilamellar vesicles (GUVs) loaded with Alexa fluorescent dye was studied by means of confocal laser scanning microscopy (CLSM) under a low-frequency alternating magnetic field (LF-AMP). Core/shell cobalt ferrite nanoparticles coated with rhodamine B isothiocyanate (MP@SiO2(RITC)) were prepared and adsorbed on the GUV membrane. The MP@SiO2-(RITC) location and distribution on giant lipid vesicles were determined by 3D-CLSM projections, and their effect on the release properties and GUV permeability under a LF-AMF was investigated by CLSM time-resolved experiments. We show that the mechanism of release of the fluorescent dye during the LF-AMF exposure is induced by magnetic nanoparticle energy and mechanical vibration, which promote the perturbation of the GUV membrane without its collapse.
Magnetically Triggered Release From Giant Unilamellar Vesicles: Visualization By Means Of Confocal Microscopy
Nappini Silvia;Al Kayal Tamer;
2011
Abstract
Magnetically triggered release from magnetic giant unilamellar vesicles (GUVs) loaded with Alexa fluorescent dye was studied by means of confocal laser scanning microscopy (CLSM) under a low-frequency alternating magnetic field (LF-AMP). Core/shell cobalt ferrite nanoparticles coated with rhodamine B isothiocyanate (MP@SiO2(RITC)) were prepared and adsorbed on the GUV membrane. The MP@SiO2-(RITC) location and distribution on giant lipid vesicles were determined by 3D-CLSM projections, and their effect on the release properties and GUV permeability under a LF-AMF was investigated by CLSM time-resolved experiments. We show that the mechanism of release of the fluorescent dye during the LF-AMF exposure is induced by magnetic nanoparticle energy and mechanical vibration, which promote the perturbation of the GUV membrane without its collapse.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.