The surface microchemical structure of high tin leaded bronze Roman mirrors has been studied by means of scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD) and optical microscopy (OM) techniques. The results allowed understanding of the origin of their high chemical stability and silvery-lustrous appearance. Indeed, some areas of the selected Roman mirrors are still characterised by a highly reflective and silver coloured surface even though they have been buried in the soil for about 2000 years. The micro-chemical results obtained from these areas have revealed that the mirror surface was tin enriched via inverse-segregation phenomenon by tailoring the cooling parameters. Furthermore, the presence of tin could be likely enhanced via cycles of oxidation and selective copper corrosion processes, thus resulting in a tin surface enrichment as a semi-transparent amorphous-like tin oxide (SnO(2)) film, as well as a copper depletion at the outer surfaces.
Bronze Roman mirrors: the secret of brightness
T de Caro;C Riccucci;P Plescia
2006
Abstract
The surface microchemical structure of high tin leaded bronze Roman mirrors has been studied by means of scanning electron microscopy combined with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD) and optical microscopy (OM) techniques. The results allowed understanding of the origin of their high chemical stability and silvery-lustrous appearance. Indeed, some areas of the selected Roman mirrors are still characterised by a highly reflective and silver coloured surface even though they have been buried in the soil for about 2000 years. The micro-chemical results obtained from these areas have revealed that the mirror surface was tin enriched via inverse-segregation phenomenon by tailoring the cooling parameters. Furthermore, the presence of tin could be likely enhanced via cycles of oxidation and selective copper corrosion processes, thus resulting in a tin surface enrichment as a semi-transparent amorphous-like tin oxide (SnO(2)) film, as well as a copper depletion at the outer surfaces.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


