The features of equatorial motion of an extended body in Kerr spacetime are investigated in the framework of the Mathisson-Papapetrou-Dixon model. The body is assumed to stay at quasiequilibrium and respond instantly to external perturbations. Besides the mass, it is completely determined by its spin, the multipolar expansion being truncated at the quadrupole order, with a spin-induced quadrupole tensor. The study of the radial effective potential allows us to analytically determine the innermost stable circular orbit shift due to spin and the associated frequency of the last circular orbit.
Dynamics of extended bodies in a Kerr spacetime with spin-induced quadrupole tensor
Bini Donato;
2015
Abstract
The features of equatorial motion of an extended body in Kerr spacetime are investigated in the framework of the Mathisson-Papapetrou-Dixon model. The body is assumed to stay at quasiequilibrium and respond instantly to external perturbations. Besides the mass, it is completely determined by its spin, the multipolar expansion being truncated at the quadrupole order, with a spin-induced quadrupole tensor. The study of the radial effective potential allows us to analytically determine the innermost stable circular orbit shift due to spin and the associated frequency of the last circular orbit.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.