Let G = (V,E) be an n-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a single-source shortest-path tree (SPT) of G with a sparse set of auxiliary edges selected from E, in order to create a structure which tolerates effectively a path failure in the SPT. This consists of a simultaneous fault of a set F of at most f adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k >= 1, it is possible to provide a very sparse (i.e., of size O(kn·f 1 + 1/k )) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k - 1)(2|F| + 1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 3 and a size of O(n logn) for the special case f = 2, and that it can be converted into a very efficient approximate-distance sensitivity oracle, that allows to quickly (even in optimal time, if k = 1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.

Path-Fault-Tolerant Approximate Shortest-Path Trees

Guido Proietti
2015

Abstract

Let G = (V,E) be an n-nodes non-negatively real-weighted undirected graph. In this paper we show how to enrich a single-source shortest-path tree (SPT) of G with a sparse set of auxiliary edges selected from E, in order to create a structure which tolerates effectively a path failure in the SPT. This consists of a simultaneous fault of a set F of at most f adjacent edges along a shortest path emanating from the source, and it is recognized as one of the most frequent disruption in an SPT. We show that, for any integer parameter k >= 1, it is possible to provide a very sparse (i.e., of size O(kn·f 1 + 1/k )) auxiliary structure that carefully approximates (i.e., within a stretch factor of (2k - 1)(2|F| + 1)) the true shortest paths from the source during the lifetime of the failure. Moreover, we show that our construction can be further refined to get a stretch factor of 3 and a size of O(n logn) for the special case f = 2, and that it can be converted into a very efficient approximate-distance sensitivity oracle, that allows to quickly (even in optimal time, if k = 1) reconstruct the shortest paths (w.r.t. our structure) from the source after a path failure, thus permitting to perform promptly the needed rerouting operations. Our structure compares favorably with previous known solutions, as we discuss in the paper, and moreover it is also very effective in practice, as we assess through a large set of experiments.
2015
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/306700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact