Anzaite-(Ce), ideally Formula Fe2+Ti6O18(OH)2, is a new, structurally complex mineral occurring as scarce minute crystals in hydrothermally altered silicocarbonatites in the Afrikanda alkali-ultramafic complex of the Kola Peninsula, Russia. The mineral is a late hydrothermal phase associated with titanite, hibschite, clinochlore and calcite replacing the primary magmatic paragenesis. The rare-earth elements (REE) (dominated by Ce), Ti and Fe incorporated in anzaite-(Ce) were derived from primary Ti oxides abundant in the host rock. Anzaite-(Ce) is brittle and lacks cleavage; the density calculated on the basis of structural data is 5.054(6) g cm-3. The mineral is opaque and grey with a bluish hue in reflected light; its reflectance values range from 15-16% at 440 nm to 13-14% at 700 nm. Its infrared spectrum shows a prominent absorption band at 3475 cm-1 indicative of OH- groups. The average chemical composition of anzaite-(Ce) gives the following empirical formula calculated on the basis of 18 oxygen atoms and two OH- groups: (Ce2.18Nd0.85La0.41Pr0.26Sm0.08Ca0.36Th0.01)?4.15Fe0.97(Ti5.68Nb0.22Si0.04)?5.94O18(OH)2. The mineral is monoclinic, space group C2/m, a = 5.290(2), b = 14.575(6), c = 5.234(2) Å, ? = 97.233(7)°, V = 400.4(5) Å3, Z = 1. The ten strongest lines in the X-ray micro-diffraction pattern are [dobs in Å (I) hkl]: 2.596 (100) 002; 1.935 (18) 170; 1.506 (14) 133; 1.286 (13) 1.11.0; 2.046 (12) 2?41; 1.730 (12) 003; 1.272 (12) 0.10.2; 3.814 (11) 1?11; 2.206 (9) 061; 1.518 (9) 172. The structure of anzaite-(Ce), refined by single-crystal techniques to R1 = 2.1%, consists of alternating layers of type 1, populated by REE (+ minor Ca) in a square antiprismatic coordination and octahedrally coordinated Fe2+, and type 2, built of five-coordinate and octahedral Ti, stacked parallel to (001). This atomic arrangement is complicated by significant disorder affecting the Fe2+, five-coordinate Ti and two of the four anion sites. The order-disorder pattern is such that only one half of these positions in total occupy any given (010) plane, and the disordered (010) planes are separated by ordered domains comprising REE, octahedral Ti and two anion sites occupied by O2-. Structural and stoichiometric relations between anzaite-(Ce) and other REE-Ti (±Nb, Ta) oxides are discussed. The name anzaite-(Ce) is in honour of Anatoly N. Zaitsev of St Petersburg State University (Russia) and The Natural History Museum (UK), in recognition of his contribution to the study of carbonatites and REE minerals. The modifier reflects the prevalence of Ce over other REE in the composition of the new mineral.

Anzaite-(Ce), a new rare-earth mineral and structure type from the Afrikanda silicocarbonatite, Kola Peninsula, Russia

LMEDICI;
2015

Abstract

Anzaite-(Ce), ideally Formula Fe2+Ti6O18(OH)2, is a new, structurally complex mineral occurring as scarce minute crystals in hydrothermally altered silicocarbonatites in the Afrikanda alkali-ultramafic complex of the Kola Peninsula, Russia. The mineral is a late hydrothermal phase associated with titanite, hibschite, clinochlore and calcite replacing the primary magmatic paragenesis. The rare-earth elements (REE) (dominated by Ce), Ti and Fe incorporated in anzaite-(Ce) were derived from primary Ti oxides abundant in the host rock. Anzaite-(Ce) is brittle and lacks cleavage; the density calculated on the basis of structural data is 5.054(6) g cm-3. The mineral is opaque and grey with a bluish hue in reflected light; its reflectance values range from 15-16% at 440 nm to 13-14% at 700 nm. Its infrared spectrum shows a prominent absorption band at 3475 cm-1 indicative of OH- groups. The average chemical composition of anzaite-(Ce) gives the following empirical formula calculated on the basis of 18 oxygen atoms and two OH- groups: (Ce2.18Nd0.85La0.41Pr0.26Sm0.08Ca0.36Th0.01)?4.15Fe0.97(Ti5.68Nb0.22Si0.04)?5.94O18(OH)2. The mineral is monoclinic, space group C2/m, a = 5.290(2), b = 14.575(6), c = 5.234(2) Å, ? = 97.233(7)°, V = 400.4(5) Å3, Z = 1. The ten strongest lines in the X-ray micro-diffraction pattern are [dobs in Å (I) hkl]: 2.596 (100) 002; 1.935 (18) 170; 1.506 (14) 133; 1.286 (13) 1.11.0; 2.046 (12) 2?41; 1.730 (12) 003; 1.272 (12) 0.10.2; 3.814 (11) 1?11; 2.206 (9) 061; 1.518 (9) 172. The structure of anzaite-(Ce), refined by single-crystal techniques to R1 = 2.1%, consists of alternating layers of type 1, populated by REE (+ minor Ca) in a square antiprismatic coordination and octahedrally coordinated Fe2+, and type 2, built of five-coordinate and octahedral Ti, stacked parallel to (001). This atomic arrangement is complicated by significant disorder affecting the Fe2+, five-coordinate Ti and two of the four anion sites. The order-disorder pattern is such that only one half of these positions in total occupy any given (010) plane, and the disordered (010) planes are separated by ordered domains comprising REE, octahedral Ti and two anion sites occupied by O2-. Structural and stoichiometric relations between anzaite-(Ce) and other REE-Ti (±Nb, Ta) oxides are discussed. The name anzaite-(Ce) is in honour of Anatoly N. Zaitsev of St Petersburg State University (Russia) and The Natural History Museum (UK), in recognition of his contribution to the study of carbonatites and REE minerals. The modifier reflects the prevalence of Ce over other REE in the composition of the new mineral.
2015
Istituto di Metodologie per l'Analisi Ambientale - IMAA
Anzaite-(Ce)
new mineral
complex oxide
crystal structure
silicocarbonatite
Afrikanda complex
Kola Peninsula
Russia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/306766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact