Connected vehicles promise to enable a wide range of new automotive services that will improve road safety, ease traffic management, and make the overall travel experience more enjoyable. However, they also open significant new surfaces for attacks on the electronics that control most of modern vehicle operations. In particular, the emergence of vehicle-to-vehicle (V2V) communication risks to lay fertile ground for self-propagating mobile malware that targets automobile environments. In this work, we perform a first study on the dynamics of vehicular malware epidemics in a large-scale road network, and unveil how a reasonably fast worm can easily infect thousands of vehicles in minutes. We determine how such dynamics are affected by a number of parameters, including the diffusion of the vulnerability, the penetration ratio and range of the V2V communication technology, or the worm self-propagation mechanism. We also propose a simple yet very effective numerical model of the worm spreading process, and prove it to be able to mimic the results of computationally expensive network simulations. Finally, we leverage the model to characterize the dangerousness of the geographical location where the worm is first injected, as well as for efficient containment of the epidemics through the cellular network.

Worm Epidemics in Vehicular Networks

Fiore M;
2015

Abstract

Connected vehicles promise to enable a wide range of new automotive services that will improve road safety, ease traffic management, and make the overall travel experience more enjoyable. However, they also open significant new surfaces for attacks on the electronics that control most of modern vehicle operations. In particular, the emergence of vehicle-to-vehicle (V2V) communication risks to lay fertile ground for self-propagating mobile malware that targets automobile environments. In this work, we perform a first study on the dynamics of vehicular malware epidemics in a large-scale road network, and unveil how a reasonably fast worm can easily infect thousands of vehicles in minutes. We determine how such dynamics are affected by a number of parameters, including the diffusion of the vulnerability, the penetration ratio and range of the V2V communication technology, or the worm self-propagation mechanism. We also propose a simple yet very effective numerical model of the worm spreading process, and prove it to be able to mimic the results of computationally expensive network simulations. Finally, we leverage the model to characterize the dangerousness of the geographical location where the worm is first injected, as well as for efficient containment of the epidemics through the cellular network.
2015
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Mobile malware
V2V communication
Vehicular networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/307077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? ND
social impact