The fibroblast growth factor (FGF)/FGF receptor (FGFR) system plays a crucial role in cancer by affecting tumor growth, angiogenesis, drug resistance, and escape from anti-angiogenic anti-vascular endothelial growth factor therapy. The soluble pattern recognition receptor long-pentraxin 3 (PTX3) acts as a multi-FGF antagonist. Here we demonstrate that human PTX3 overexpression in transgenic mice driven by the Tie2 promoter inhibits tumor growth, angiogenesis, and metastasis in heterotopic, orthotopic, and autochthonous FGF-dependent tumor models. Using pharmacophore modeling of the interaction of a minimal PTX3-derived FGF-binding pentapeptide with FGF2, we identified a small-molecule chemical (NSC12) that acts as an extracellular FGF trap with significant implications in cancer therapy. Ronca et al. show that overexpression of long-pentraxin 3 (PTX3) in mice inhibits the growth of FGF-dependent tumor models. On the basis of pharmacophore modeling of PTX3-FGF2 interaction, they identify a small molecule that acts as an extracellular FGF trap and inhibits FGF-dependent tumor growth in mice.

Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy

Pagano Katiuscia;Ragona Laura;Moroni Elisabetta;Colombo Giorgio;
2015

Abstract

The fibroblast growth factor (FGF)/FGF receptor (FGFR) system plays a crucial role in cancer by affecting tumor growth, angiogenesis, drug resistance, and escape from anti-angiogenic anti-vascular endothelial growth factor therapy. The soluble pattern recognition receptor long-pentraxin 3 (PTX3) acts as a multi-FGF antagonist. Here we demonstrate that human PTX3 overexpression in transgenic mice driven by the Tie2 promoter inhibits tumor growth, angiogenesis, and metastasis in heterotopic, orthotopic, and autochthonous FGF-dependent tumor models. Using pharmacophore modeling of the interaction of a minimal PTX3-derived FGF-binding pentapeptide with FGF2, we identified a small-molecule chemical (NSC12) that acts as an extracellular FGF trap with significant implications in cancer therapy. Ronca et al. show that overexpression of long-pentraxin 3 (PTX3) in mice inhibits the growth of FGF-dependent tumor models. On the basis of pharmacophore modeling of PTX3-FGF2 interaction, they identify a small molecule that acts as an extracellular FGF trap and inhibits FGF-dependent tumor growth in mice.
2015
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
FGF2
pentraxin
NMR
structural biology
antineoplastic molecule
File in questo prodotto:
File Dimensione Formato  
prod_337911-doc_167159.pdf

accesso aperto

Descrizione: Long-Pentraxin 3 Derivative as a Small-Molecule FGF Trap for Cancer Therapy
Tipologia: Versione Editoriale (PDF)
Dimensione 5.06 MB
Formato Adobe PDF
5.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/307094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? ND
social impact