A successful general strategy for improving the electron collection efficiency in Dye Sensitized Solar Cells based on common Ru(II) complexes like Z907 and kinetically fast redox mediators based on the [Co(bpy)(3)](3+/2+) couples was investigated. The post-treatment of the dyed photoanode with commercially available tri-alkoxy silanes was effective in screening the TiO2 surface by electron recapture involving Co(III), but, interestingly, silanes endowed with relatively short propyl chains like aminopropyl-triethoxysilane (APTS) and trimethylammoniumpropyl-trimethoxysilane (TMAS) bearing a cationic charge, proved to be more effective than longer and more sterically hindered C16 chains in suppressing the dark current. In the best cases (TMAS and APTS), the siloxane treatment resulted in overall improvements of the cell efficiency of the order of respectively 600% and 500% by comparison with the untreated photoanode based on the Z907 Ru(II) Dye. This approach may represent a viable procedure for improving the electron collection efficiency in cobalt mediated DSSCs even without the use of highly sterically hindered dyes specifically designed to work in conjunction with kinetically fast metal based mediators.

A viable surface passivation approach to improve efficiency in cobalt based dye sensitized solar cells

Argazzi Roberto;
2014

Abstract

A successful general strategy for improving the electron collection efficiency in Dye Sensitized Solar Cells based on common Ru(II) complexes like Z907 and kinetically fast redox mediators based on the [Co(bpy)(3)](3+/2+) couples was investigated. The post-treatment of the dyed photoanode with commercially available tri-alkoxy silanes was effective in screening the TiO2 surface by electron recapture involving Co(III), but, interestingly, silanes endowed with relatively short propyl chains like aminopropyl-triethoxysilane (APTS) and trimethylammoniumpropyl-trimethoxysilane (TMAS) bearing a cationic charge, proved to be more effective than longer and more sterically hindered C16 chains in suppressing the dark current. In the best cases (TMAS and APTS), the siloxane treatment resulted in overall improvements of the cell efficiency of the order of respectively 600% and 500% by comparison with the untreated photoanode based on the Z907 Ru(II) Dye. This approach may represent a viable procedure for improving the electron collection efficiency in cobalt mediated DSSCs even without the use of highly sterically hindered dyes specifically designed to work in conjunction with kinetically fast metal based mediators.
2014
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Cobalt mediators
Dark current
DSSC
Silanization
Surface passivation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/307277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact