The coupling of spin and valley physics is nowadays regarded as a promising route toward next-generation spintronic and valleytronic devices. In the aim of engineering functional properties for valleytronic applications, we focus on the ferroelectric heterostructure BiAlO3/BiIrO3, where the complex interplay among a trigonal crystal field, layer degrees of freedom, and spin-orbit coupling mediates a strong spin-valley coupling. Furthermore, we show that ferroelectricity provides a nonvolatile handle to manipulate and switch the emerging valley-contrasting spin polarization.

Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures

Barone P;Picozzi S
2015

Abstract

The coupling of spin and valley physics is nowadays regarded as a promising route toward next-generation spintronic and valleytronic devices. In the aim of engineering functional properties for valleytronic applications, we focus on the ferroelectric heterostructure BiAlO3/BiIrO3, where the complex interplay among a trigonal crystal field, layer degrees of freedom, and spin-orbit coupling mediates a strong spin-valley coupling. Furthermore, we show that ferroelectricity provides a nonvolatile handle to manipulate and switch the emerging valley-contrasting spin polarization.
2015
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/307364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? ND
social impact