Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. METHODS: LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. RESULTS: The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). CONCLUSIONS: This study demonstrates that the TLD dose response, for doses <=10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.

Evaluation of LiF:Mg,Ti (TLD-100) for Intraoperative Electron Radiation Therapy Quality Assurance.

Liuzzi Raffaele;D'Avino Vittoria;Cella Laura
2015

Abstract

Purpose of the present work was to investigate thermoluminescent dosimeters (TLDs) response to intraoperative electron radiation therapy (IOERT) beams. In an IOERT treatment, a large single radiation dose is delivered with a high dose-per-pulse electron beam (2-12 cGy/pulse) during surgery. To verify and to record the delivered dose, in vivo dosimetry is a mandatory procedure for quality assurance. The TLDs feature many advantages such as a small detector size and close tissue equivalence that make them attractive for IOERT as in vivo dosimeters. METHODS: LiF:Mg,Ti dosimeters (TLD-100) were irradiated with different IOERT electron beam energies (5, 7 and 9 MeV) and with a 6 MV conventional photon beam. For each energy, the TLDs were irradiated in the dose range of 0-10 Gy in step of 2Gy. Regression analysis was performed to establish the response variation of thermoluminescent signals with dose and energy. RESULTS: The TLD-100 dose-response curves were obtained. In the dose range of 0-10 Gy, the calibration curve was confirmed to be linear for the conventional photon beam. In the same dose region, the quadratic model performs better than the linear model when high dose-per-pulse electron beams were used (F test; p<0.05). CONCLUSIONS: This study demonstrates that the TLD dose response, for doses <=10Gy, has a parabolic behavior in high dose-per-pulse electron beams. TLD-100 can be useful detectors for IOERT patient dosimetry if a proper calibration is provided.
2015
Intraoperative Electron Radiation Therapy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/307591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact