It is possible to optimize the performance of the inorganic-organic composites dispersing the inorganic component in the organic matrix on a nanomiter length scale. If dry the inorganic phase cannot be intimately dispersed during the incorporation in the matrix. When the particle surface is organically modified, and the incorporation is made starting from a liquid dispersion (particles in polymer solution), the resulting composites exhibit an excellent homogeneity. Here, monolithic [poly(methyl methacrylate)/monodisperse silica particles] nanocomposites have been prepared and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), micro-hardness, and differential scanning calorimetry (DSC).

A Method for the Preparation of PMMA-SiO2 nanocomposites with high homogeneity

L Nicolais;
1996

Abstract

It is possible to optimize the performance of the inorganic-organic composites dispersing the inorganic component in the organic matrix on a nanomiter length scale. If dry the inorganic phase cannot be intimately dispersed during the incorporation in the matrix. When the particle surface is organically modified, and the incorporation is made starting from a liquid dispersion (particles in polymer solution), the resulting composites exhibit an excellent homogeneity. Here, monolithic [poly(methyl methacrylate)/monodisperse silica particles] nanocomposites have been prepared and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), micro-hardness, and differential scanning calorimetry (DSC).
1996
nanocomposites
poly(methyl methacrylate)
silica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/307735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact