Fifth-generation ethylendiamine-core poly(amidoamine) (PAMAM G5)-capped gold nanoparticles were prepared by picosecond laser ablation in water, with the fundamental and second harmonic of a picosecond Nd:YAG laser. Although the visible wavelength exhibited a lower ablation threshold than that of the infrared one, the ablation process at 532 nm reached early saturation because of both linear and nonlinear absorption mechanisms, accompanied by fragmentation of existing nanoparticles. We demonstrate that the onset of the fragmentation can be monitored by simple UV-vis spectroscopy, thanks to the ability of PAMAM G5 to stabilize gold cations, which results in the growth of an intense band at 290 nm. We observed that, while with 532 nm (2.33 eV) irradiation a two-photon absorption mechanism induces fragmentation of the nanoparticles, the suspensions remain stable when irradiated with 1064 nm (1.17 eV) up to 60 GW/cm(2).
Multiphoton fragmentation of PAMAM 5-capped-gold-nanoparticles induced by picosecond laser irradiation at 532nm
Emilia Giorgetti;
2007
Abstract
Fifth-generation ethylendiamine-core poly(amidoamine) (PAMAM G5)-capped gold nanoparticles were prepared by picosecond laser ablation in water, with the fundamental and second harmonic of a picosecond Nd:YAG laser. Although the visible wavelength exhibited a lower ablation threshold than that of the infrared one, the ablation process at 532 nm reached early saturation because of both linear and nonlinear absorption mechanisms, accompanied by fragmentation of existing nanoparticles. We demonstrate that the onset of the fragmentation can be monitored by simple UV-vis spectroscopy, thanks to the ability of PAMAM G5 to stabilize gold cations, which results in the growth of an intense band at 290 nm. We observed that, while with 532 nm (2.33 eV) irradiation a two-photon absorption mechanism induces fragmentation of the nanoparticles, the suspensions remain stable when irradiated with 1064 nm (1.17 eV) up to 60 GW/cm(2).File | Dimensione | Formato | |
---|---|---|---|
prod_57118-doc_27693.pdf
solo utenti autorizzati
Descrizione: Multiphoton fragmentation of PAMAM 5-capped-gold-nanoparticles induced by picosecond laser irradiation at 532nm
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
792.69 kB
Formato
Adobe PDF
|
792.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.