High fuel consumption coupled with increasing fuel prices, emission regulations and increasing concern about the environment, act as incentives to reduce the energy consumption of ships. However, different barriers hinder the adoption of cost-effective energy saving measures by ship owners and operators. These barriers are the reason for the existence of an 'energy efficiency gap' between the current level of energy efficiency and the potential for development of higher order efficiency. Imperfect information regarding the current level of energy consumption of vessels, availability and application of energy saving measures, and the impact of adopting these measures, form a group of so called 'information barriers'. 1 The main objective of this article is to reduce those information barriers, as faced in shipping and more specifically in the fishing sector. The bond graph methodology is presented as a potential solution to these issues. It is utilized as a modeling and simulation method by which to visualize energy flow in a fishing vessel. The bond graph method is employed to estimate the fuel consumption of the vessel under different operational conditions: Steaming, trawling and hauling of the fishing gear. It is also applied in pinpointing the major energy consuming apparatuses onboard the vessel. In this way knowledge regarding the current levels of energy consumption can be increased. The main energy consumers can then be studied to further improve energy efficiency knowledge and subsequently reduce the energy efficiency gap of the fishing vessel. Finally, the effectiveness of implementing a slow steaming strategy as a possible energy saving mechanism is studied.

A bond graph approach to improve the energy efficiency of ships

Notti Emilio;Sala Antonello;
2014

Abstract

High fuel consumption coupled with increasing fuel prices, emission regulations and increasing concern about the environment, act as incentives to reduce the energy consumption of ships. However, different barriers hinder the adoption of cost-effective energy saving measures by ship owners and operators. These barriers are the reason for the existence of an 'energy efficiency gap' between the current level of energy efficiency and the potential for development of higher order efficiency. Imperfect information regarding the current level of energy consumption of vessels, availability and application of energy saving measures, and the impact of adopting these measures, form a group of so called 'information barriers'. 1 The main objective of this article is to reduce those information barriers, as faced in shipping and more specifically in the fishing sector. The bond graph methodology is presented as a potential solution to these issues. It is utilized as a modeling and simulation method by which to visualize energy flow in a fishing vessel. The bond graph method is employed to estimate the fuel consumption of the vessel under different operational conditions: Steaming, trawling and hauling of the fishing gear. It is also applied in pinpointing the major energy consuming apparatuses onboard the vessel. In this way knowledge regarding the current levels of energy consumption can be increased. The main energy consumers can then be studied to further improve energy efficiency knowledge and subsequently reduce the energy efficiency gap of the fishing vessel. Finally, the effectiveness of implementing a slow steaming strategy as a possible energy saving mechanism is studied.
2014
Istituto di Scienze Marine - ISMAR
978-0-7918-4551-6
energy efficiency in fisheries
fuel saving
naval engineering
propulsion systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/308772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact