Distributed generation takes center stage in today's rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids.

Data-driven modeling of solar-powered urban microgrids

Antonio Scala;
2016

Abstract

Distributed generation takes center stage in today's rapidly changing energy landscape. Particularly, locally matching demand and generation in the form of microgrids is becoming a promising alternative to the central distribution paradigm. Infrastructure networks have long been a major focus of complex networks research with their spatial considerations. We present a systemic study of solar-powered microgrids in the urban context, obeying real hourly consumption patterns and spatial constraints of the city. We propose a microgrid model and study its citywide implementation, identifying the self-sufficiency and temporal properties of microgrids. Using a simple optimization scheme, we find microgrid configurations that result in increased resilience under cost constraints. We characterize load-related failures solving power flows in the networks, and we show the robustness behavior of urban microgrids with respect to optimization using percolation methods. Our findings hint at the existence of an optimal balance between cost and robustness in urban microgrids.
2016
Istituto dei Sistemi Complessi - ISC
complex networkspower systemsmicrogridsolar PVdistributed generationresilience
File in questo prodotto:
File Dimensione Formato  
prod_344779-doc_108635.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/308878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 44
social impact