We investigate the Amplified Spontaneous Emission (ASE) properties of a prototypical host-guest polymer polymer blend, namely poly(9,9-dioctylfluorene) (PF8) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) blend, with different concentration ratio. We show that the initial F8BT content increase causes an increase of the F8BT ASE threshold, even leading to ASE suppression for F8BT contents between 25% and 75%. ASE is then recovered upon further increase of the F8BT relative content. We demonstrate that the ASE properties of the PF8:F8BT are dominated by morphology effects, like submicrometric phase segregation, determining the net gain of the active waveguides.
On the correlation between morphology and Amplified Spontaneous Emission properties of a polymer: Polymer blend
Cretí Arianna;Lomascolo Mauro;
2016
Abstract
We investigate the Amplified Spontaneous Emission (ASE) properties of a prototypical host-guest polymer polymer blend, namely poly(9,9-dioctylfluorene) (PF8) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) blend, with different concentration ratio. We show that the initial F8BT content increase causes an increase of the F8BT ASE threshold, even leading to ASE suppression for F8BT contents between 25% and 75%. ASE is then recovered upon further increase of the F8BT relative content. We demonstrate that the ASE properties of the PF8:F8BT are dominated by morphology effects, like submicrometric phase segregation, determining the net gain of the active waveguides.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.