The investigation of the interplay between geometry and nonlinearity may open the road to the control of extreme waves. We study three-dimensional localization and dispersive shocks in a bent cigar shaped potential by the nonlinear Schrödinger equation. At high bending and high nonlinearity, topological trapping is frustrated by the generation of curved wave-breaking. Four-dimensional parallel simulations confirm the theoretical model. This work may contribute to novel devices based on geometrically constrained highly nonlinear dynamics and tests and analogs of fundamental physical theories in curved space.
Localization and shock waves in curved manifolds
Claudio Conti
2016
Abstract
The investigation of the interplay between geometry and nonlinearity may open the road to the control of extreme waves. We study three-dimensional localization and dispersive shocks in a bent cigar shaped potential by the nonlinear Schrödinger equation. At high bending and high nonlinearity, topological trapping is frustrated by the generation of curved wave-breaking. Four-dimensional parallel simulations confirm the theoretical model. This work may contribute to novel devices based on geometrically constrained highly nonlinear dynamics and tests and analogs of fundamental physical theories in curved space.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_352333-doc_113221.pdf
solo utenti autorizzati
Descrizione: Articolo pubblicato
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


