Continuing our ongoing investigations of random lasing, we used the Monte Carlo method to simulate random walks of photons within a multiply scattering medium. By initially applying this technique to calculate pulse-stretching in a passive disordered medium, we elucidated its agreement with analytical diffusion theory. Thereafter, we introduced conditions of optical amplication, and reproduced the experimentally observed spectral features like spectral narrowing, intensity enhancement, bichromaticity, mode competition, etc., in a random laser. After investigating diffusive and sub-diffusive regimes of scattering, we formulated our results in terms of a gain subvolume, the functioning of which depends upon local gain conditions. We then used a modified approach of this technique to study ultranarrow random lasing modes, and successfully reproduced these modes observed in a random laser. Based on our simulations, we were able to explain the origins of ultra-narrow lasing modes as excessively amplified extended modes.

Monte Carlo calculations of spectral features in random lasing

Wiersma D
2010

Abstract

Continuing our ongoing investigations of random lasing, we used the Monte Carlo method to simulate random walks of photons within a multiply scattering medium. By initially applying this technique to calculate pulse-stretching in a passive disordered medium, we elucidated its agreement with analytical diffusion theory. Thereafter, we introduced conditions of optical amplication, and reproduced the experimentally observed spectral features like spectral narrowing, intensity enhancement, bichromaticity, mode competition, etc., in a random laser. After investigating diffusive and sub-diffusive regimes of scattering, we formulated our results in terms of a gain subvolume, the functioning of which depends upon local gain conditions. We then used a modified approach of this technique to study ultranarrow random lasing modes, and successfully reproduced these modes observed in a random laser. Based on our simulations, we were able to explain the origins of ultra-narrow lasing modes as excessively amplified extended modes.
2010
Istituto Nazionale di Ottica - INO
Random lasing
multiple scattering
Monte Carlo
light diffusion
random walks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/30960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? ND
social impact