Cerium oxide is a very interesting material that finds applications in many different fields, such as catalysis, energy conversion, and biomedicine. An interesting approach to unravel the complexity of real systems and obtain an improved understanding of cerium oxide-based materials is represented by the study of model systems in the form of epitaxial ultrathin films or nanostructures supported on single crystalline substrates. These materials often show interesting novel properties, induced by spatial confinement and by the interaction with the supporting substrate, and their understanding requires the use of advanced experimental techniques combined with computational modeling. Recent experimental and theoretical studies performed within this field are examined and discussed here, with emphasis on the new perspectives introduced in view of the optimization of cerium oxide-based materials for application in different fields.

Structure, morphology and reducibility of epitaxial cerium oxide ultrathin films and nanostructures

Luches P;Valeri S
2015

Abstract

Cerium oxide is a very interesting material that finds applications in many different fields, such as catalysis, energy conversion, and biomedicine. An interesting approach to unravel the complexity of real systems and obtain an improved understanding of cerium oxide-based materials is represented by the study of model systems in the form of epitaxial ultrathin films or nanostructures supported on single crystalline substrates. These materials often show interesting novel properties, induced by spatial confinement and by the interaction with the supporting substrate, and their understanding requires the use of advanced experimental techniques combined with computational modeling. Recent experimental and theoretical studies performed within this field are examined and discussed here, with emphasis on the new perspectives introduced in view of the optimization of cerium oxide-based materials for application in different fields.
2015
Istituto Nanoscienze - NANO
Interface structure
Low-energy electron diffraction
Oxidation state
Reactive molecular beam epitaxy
Reducible oxides
Scanning tunneling microscopy
Strain
Surface morphology
X-ray photoelectron spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/309643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact