AIM Porphyrin-loaded core-shell nanoparticles have been engineered for use as in vivo sonosensitizing systems, radio-tracers or magnetic resonance (MR) imaging agents, which may be suitable for the selective treatment of solid tumors and imaging analyses. MATERIALS & METHODS Polymethyl methacrylate nanoparticles (PMMANPs) have been either loaded with meso-tetrakis (4-sulphonatophenyl) porphyrin (TPPS) for sonodynamic anticancer treatment, with (64)Cu-TPPS for positron emission tomography biodistribution studies or with Mn(III)-TPPS for MR tumor accumulation evaluation. RESULTS PMMANPs are easily functionalized with negatively charged molecules and show favorable biodistribution. In vivo TPPS-PMMANPs have demonstrated shock wave responsiveness in a Mat B III syngeneic rat breast cancer model as measured by MR analyses of pre- and post-treatment tumor volumes. CONCLUSION TPPS-PMMANPs are a multimodal system which can efficiently induce in vivo sonodynamic anticancer activity.

Engineered porphyrin loaded core-shell nanoparticles for selective sonodynamic anticancer treatment

Varchi;Greta;Ballestri;Marco;Sotgiu;Giovanna;Guerrini;Andrea;
2015

Abstract

AIM Porphyrin-loaded core-shell nanoparticles have been engineered for use as in vivo sonosensitizing systems, radio-tracers or magnetic resonance (MR) imaging agents, which may be suitable for the selective treatment of solid tumors and imaging analyses. MATERIALS & METHODS Polymethyl methacrylate nanoparticles (PMMANPs) have been either loaded with meso-tetrakis (4-sulphonatophenyl) porphyrin (TPPS) for sonodynamic anticancer treatment, with (64)Cu-TPPS for positron emission tomography biodistribution studies or with Mn(III)-TPPS for MR tumor accumulation evaluation. RESULTS PMMANPs are easily functionalized with negatively charged molecules and show favorable biodistribution. In vivo TPPS-PMMANPs have demonstrated shock wave responsiveness in a Mat B III syngeneic rat breast cancer model as measured by MR analyses of pre- and post-treatment tumor volumes. CONCLUSION TPPS-PMMANPs are a multimodal system which can efficiently induce in vivo sonodynamic anticancer activity.
2015
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
acoustic cavitation
cancer
polymethyl methacr
porphyrin
reactive oxygen species
shock waves
sonodynamic therapy
sonosensitizer
theranostics
therapeutic ultrasound
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/309709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 59
  • ???jsp.display-item.citation.isi??? ND
social impact