In a previous study we developed a highly sensitive DNA microarray for the detection of common KRAS oncogenic mutations, which has been proven to be highly specific in assigning the correct genotype without any enrichment strategy even in the presence of minority mutated alleles. However, in this approach, the need of a spotter for the deposition of the purified PCR products on the substrates and the purification step of the conventional PCR are serious drawbacks. To overcome these limitations we have introduced the solid-phase polymerase chain reaction (SP-PCR) to form the array of PCR products starting from the oligonucleotide primers. This work was possible thanks to the great thermal stability of the copoly (DMA-NAS-MAPS) coating which withstands PCR thermal cycling temperatures. As an example of the application of this platform we performed the analysis of six common mutations in the codon 12 of KRAS gene (G12A, G12C, G12D, G12R, G12S, and G12V). In conclusion solid-phase PCR, combined with dual-color hybridization, allows mutation analysis in a shorter time span and is more suitable for automation.

DNA microarray-based solid-phase PCR on copoly (DMA-NAS-MAPS) silicon coated slides: An example of relevant clinical application

Damin F;Chiari M
2016

Abstract

In a previous study we developed a highly sensitive DNA microarray for the detection of common KRAS oncogenic mutations, which has been proven to be highly specific in assigning the correct genotype without any enrichment strategy even in the presence of minority mutated alleles. However, in this approach, the need of a spotter for the deposition of the purified PCR products on the substrates and the purification step of the conventional PCR are serious drawbacks. To overcome these limitations we have introduced the solid-phase polymerase chain reaction (SP-PCR) to form the array of PCR products starting from the oligonucleotide primers. This work was possible thanks to the great thermal stability of the copoly (DMA-NAS-MAPS) coating which withstands PCR thermal cycling temperatures. As an example of the application of this platform we performed the analysis of six common mutations in the codon 12 of KRAS gene (G12A, G12C, G12D, G12R, G12S, and G12V). In conclusion solid-phase PCR, combined with dual-color hybridization, allows mutation analysis in a shorter time span and is more suitable for automation.
2016
Istituto di Chimica del Riconoscimento Molecolare - ICRM - Sede Milano
DNA microarray
Genotyping
Polymer coated silicon slide
Solid-phase PCR
File in questo prodotto:
File Dimensione Formato  
prod_348198-doc_185754.pdf

accesso aperto

Descrizione: DNA microarray-based solid-phase PCR on copoly (DMA-NAS-MAPS) silicon coated slides: An example of relevant clinical application
Tipologia: Documento in Post-print
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/309772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact