The measurement of relative displacements and deformations is important in many fields such as structural engineering, aerospace, geophysics, and nanotechnology. Optical-fiber sensors have become key tools for strain measurements, with sensitivity limits ranging between 10(-9) and 10(-6)epsilon hertz (Hz)(-1/2) (where epsilon is the fractional length change). We report on strain measurements at the 10(-13)epsilon-Hz(-1/2) level using a fiber Bragg-grating resonator with a diode-laser source that is stabilized against a quartz-disciplined optical frequency comb, thus approaching detection limits set by thermodynamic phase fluctuations in the fiber. This scheme may provide a route to a new generation of strain sensors that is entirely based on fiber-optic systems, which are aimed at measuring fundamental physical quantities; for example, in gyroscopes, accelerometers, and gravity experiments.

Probing the Ultimate Limit of Fiber-optic Strain Sensing

Gagliardi G;Avino S;Ferraro P;De Natale P
2010

Abstract

The measurement of relative displacements and deformations is important in many fields such as structural engineering, aerospace, geophysics, and nanotechnology. Optical-fiber sensors have become key tools for strain measurements, with sensitivity limits ranging between 10(-9) and 10(-6)epsilon hertz (Hz)(-1/2) (where epsilon is the fractional length change). We report on strain measurements at the 10(-13)epsilon-Hz(-1/2) level using a fiber Bragg-grating resonator with a diode-laser source that is stabilized against a quartz-disciplined optical frequency comb, thus approaching detection limits set by thermodynamic phase fluctuations in the fiber. This scheme may provide a route to a new generation of strain sensors that is entirely based on fiber-optic systems, which are aimed at measuring fundamental physical quantities; for example, in gyroscopes, accelerometers, and gravity experiments.
2010
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto Nazionale di Ottica - INO
optical fiber Bragg garting
diode laser
optical frequency comb
strain sensing
fiber resonator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/30980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 225
  • ???jsp.display-item.citation.isi??? ND
social impact