Luminescence and photoinduced energy- and electron transfer are used in a number of applications, such as optoelectronics, sensing and solar energy conversion [1]. We investigate these fundamental phenomena in photoactive organic molecules, metal complexes, supramolecular arrays and nanomaterials which are targeted at (i) lighting devices [2] and (ii) light harvesting and charge separation in model solar energy conversion systems [3,4]. Some of our recent work on luminescent Ir(III) and Cu(I) complexes [5,6], red-emitting hybrid materials made of Eu(III)-based luminophores and carbon nanonotubes [7] and photoinduced processes in multichromophoric systems [4] will be surveyed. Emphasis will be put on the strategies to optimize the luminescence output, color and stability of Ir(III) and Cu(I) complexes, along with the possibility to switch from metal complexes to hybrid organic-inorganic materials and fully organic triplet luminophores [8]. The key topics of the lecture will be framed in the more general context of the ongoing energy transition. In particular, the limited availability of certain elements in the Earth crust for manufacturing efficient energy conversion devices powered by solar energy [9]. [1]Praveen, V. K.; Ranjith, C.; Bandini, E.; Ajayaghosh, A.; Armaroli, N. Chem. Soc. Rev. 2014, 43, 4222-4242. [2]Costa, R. D.; Orti, E.; Bolink, H. J.; Monti, F.; Accorsi, G.; Armaroli, N. Angew. Chem. Int. Ed. 2012, 51, 8178-8211. [3]Kremer, A.; Bietlot, E.; Zanelli, A.; Malicka, J. M.; Armaroli, N.; Bonifazi, D. Chem.-Eur. J. 2015, 21, 1108-1117. [4]Yoosaf, K.; Iehl, J.; Nierengarten, I.; Hmadeh, M.; Albrecht-Gary, A. M.; Nierengarten, J. F.; Armaroli, N. Chem.-Eur. J. 2014, 20, 223-231. [5]Mohankumar, M.; Monti, F.; Holler, M.; Niess, F.; Delavaux-Nicot, B.; Armaroli, N.; Sauvage, J. P.; Nierengarten, J. F. Chem.-Eur. J. 2014, 20, 12083-12090. [6]Monti, F.; Baschieri, A.; Gualandi, I.; Serrano-Perez, J. J.; Junquera-Hernandez, J. M.; Tonelli, D.; Mazzanti, A.; Muzzioli, S.; Stagni, S.; Roldan-Carmona, C.; Pertegas, A.; Bolink, H. J.; Orti, E.; Sambri, L.; Armaroli, N. Inorg. Chem. 2014, 53, 7709-7721. [7]Mohanraj, J.; Armaroli, N. J. Phys. Chem. Lett. 2013, 4, 767-778. [8]Kremer, A.; Aurisicchio, C.; De Leo, F.; Ventura, B.; Wouters, J.; Armaroli, N.; Barbieri, A.; Bonifazi, D. Chem.-Eur. J. 2015, 21, 15377-15387. [9]Armaroli, N.; Balzani, V. Chem.-Eur. J. 2016, 22, 32-57.

Photoactive materials for energy conversion

Nicola Armaroli
2016

Abstract

Luminescence and photoinduced energy- and electron transfer are used in a number of applications, such as optoelectronics, sensing and solar energy conversion [1]. We investigate these fundamental phenomena in photoactive organic molecules, metal complexes, supramolecular arrays and nanomaterials which are targeted at (i) lighting devices [2] and (ii) light harvesting and charge separation in model solar energy conversion systems [3,4]. Some of our recent work on luminescent Ir(III) and Cu(I) complexes [5,6], red-emitting hybrid materials made of Eu(III)-based luminophores and carbon nanonotubes [7] and photoinduced processes in multichromophoric systems [4] will be surveyed. Emphasis will be put on the strategies to optimize the luminescence output, color and stability of Ir(III) and Cu(I) complexes, along with the possibility to switch from metal complexes to hybrid organic-inorganic materials and fully organic triplet luminophores [8]. The key topics of the lecture will be framed in the more general context of the ongoing energy transition. In particular, the limited availability of certain elements in the Earth crust for manufacturing efficient energy conversion devices powered by solar energy [9]. [1]Praveen, V. K.; Ranjith, C.; Bandini, E.; Ajayaghosh, A.; Armaroli, N. Chem. Soc. Rev. 2014, 43, 4222-4242. [2]Costa, R. D.; Orti, E.; Bolink, H. J.; Monti, F.; Accorsi, G.; Armaroli, N. Angew. Chem. Int. Ed. 2012, 51, 8178-8211. [3]Kremer, A.; Bietlot, E.; Zanelli, A.; Malicka, J. M.; Armaroli, N.; Bonifazi, D. Chem.-Eur. J. 2015, 21, 1108-1117. [4]Yoosaf, K.; Iehl, J.; Nierengarten, I.; Hmadeh, M.; Albrecht-Gary, A. M.; Nierengarten, J. F.; Armaroli, N. Chem.-Eur. J. 2014, 20, 223-231. [5]Mohankumar, M.; Monti, F.; Holler, M.; Niess, F.; Delavaux-Nicot, B.; Armaroli, N.; Sauvage, J. P.; Nierengarten, J. F. Chem.-Eur. J. 2014, 20, 12083-12090. [6]Monti, F.; Baschieri, A.; Gualandi, I.; Serrano-Perez, J. J.; Junquera-Hernandez, J. M.; Tonelli, D.; Mazzanti, A.; Muzzioli, S.; Stagni, S.; Roldan-Carmona, C.; Pertegas, A.; Bolink, H. J.; Orti, E.; Sambri, L.; Armaroli, N. Inorg. Chem. 2014, 53, 7709-7721. [7]Mohanraj, J.; Armaroli, N. J. Phys. Chem. Lett. 2013, 4, 767-778. [8]Kremer, A.; Aurisicchio, C.; De Leo, F.; Ventura, B.; Wouters, J.; Armaroli, N.; Barbieri, A.; Bonifazi, D. Chem.-Eur. J. 2015, 21, 15377-15387. [9]Armaroli, N.; Balzani, V. Chem.-Eur. J. 2016, 22, 32-57.
2016
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Energy
Luminescence
Fullerene
Electron transfer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/309930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact