Capillary monitoring of traffic in urban environment is key to a more sustainable mobility in smart cities. In this context, the use of low cost technologies is mandatory to avoid scalability issues that would prevent the adoption of monitoring solutions at the full city scale. In this paper, we introduce a low power and low cost sensor equipped with embedded vision logics that can be used for building Smart Camera Networks (SCN) for applications in Intelligent Transportation System (ITS), in particular, we describe an ad hoc computer vision algorithm for estimation of traffic flow and discuss the findings obtained through an actual field test.

Computer Vision on Embedded Sensors for Traffic Flow Monitoring

Magrini M;Moroni D;Palazzese G;Salvetti O
2015

Abstract

Capillary monitoring of traffic in urban environment is key to a more sustainable mobility in smart cities. In this context, the use of low cost technologies is mandatory to avoid scalability issues that would prevent the adoption of monitoring solutions at the full city scale. In this paper, we introduce a low power and low cost sensor equipped with embedded vision logics that can be used for building Smart Camera Networks (SCN) for applications in Intelligent Transportation System (ITS), in particular, we describe an ad hoc computer vision algorithm for estimation of traffic flow and discuss the findings obtained through an actual field test.
2015
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4673-6595-6
Embedded Systems
Intelligent Transport Systems (ITS)
Real-Time Imaging
File in questo prodotto:
File Dimensione Formato  
prod_346048-doc_108598.pdf

solo utenti autorizzati

Descrizione: Computer Vision on Embedded Sensors for Traffic Flow Monitoring
Tipologia: Versione Editoriale (PDF)
Dimensione 354.9 kB
Formato Adobe PDF
354.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_346048-doc_181203.pdf

accesso aperto

Descrizione: Postprint - Computer Vision on Embedded Sensors for Traffic Flow Monitoring
Tipologia: Versione Editoriale (PDF)
Dimensione 410.97 kB
Formato Adobe PDF
410.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/310033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact