Embryonic Stem cells (ESCs) can be differentiated into ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. In regular culture conditions, ESCs' self-renewal is maintained through molecules that inhibit spontaneous differentiation enabling long-term cellular expansion. This undifferentiating condition is characterized by multiple metastable states that fluctuate between self-renewal and differentiation balance. Here, we aim to characterize the high-pluripotent ESC metastate marked by the expression of Zscan4 through a supervised machine learning framework based on an ensemble of support vector machine (SVM) classifiers. Our study revealed a leukaemia inhibitor factor (Lif) dependent not-canonical pluripotency signature (AF067063, BC061212, Dub1, Eif1a, Gm12794, Gm13871, Gm4340, Gm4850, Tcstv1/3, and Zfp352), that specifically marks Zscan4 ESCs' fluctuation. This novel ESC metastate is enhanced by highpluripotency culture conditions obtained through Extracellular signal Regulated-Kinase (ERK) and Glycogen synthase kinase- 3 (Gsk-3) signaling inhibition (2i). Significantly, we reported that the conditional ablation of the novel ESC metastate marked by the expression of Gm12794 is required for ESCs self-renewal maintenance. In conclusion, we extend the comprehension of ESCs biology through the identification of a novel molecular signature associated to pluripotency programming. Copyright: © 2014 Cerulo et al.

Identification of a novel gene signature of ES cells self-renewal fluctuation through system-wide analysis

Marotta P;
2014

Abstract

Embryonic Stem cells (ESCs) can be differentiated into ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. In regular culture conditions, ESCs' self-renewal is maintained through molecules that inhibit spontaneous differentiation enabling long-term cellular expansion. This undifferentiating condition is characterized by multiple metastable states that fluctuate between self-renewal and differentiation balance. Here, we aim to characterize the high-pluripotent ESC metastate marked by the expression of Zscan4 through a supervised machine learning framework based on an ensemble of support vector machine (SVM) classifiers. Our study revealed a leukaemia inhibitor factor (Lif) dependent not-canonical pluripotency signature (AF067063, BC061212, Dub1, Eif1a, Gm12794, Gm13871, Gm4340, Gm4850, Tcstv1/3, and Zfp352), that specifically marks Zscan4 ESCs' fluctuation. This novel ESC metastate is enhanced by highpluripotency culture conditions obtained through Extracellular signal Regulated-Kinase (ERK) and Glycogen synthase kinase- 3 (Gsk-3) signaling inhibition (2i). Significantly, we reported that the conditional ablation of the novel ESC metastate marked by the expression of Gm12794 is required for ESCs self-renewal maintenance. In conclusion, we extend the comprehension of ESCs biology through the identification of a novel molecular signature associated to pluripotency programming. Copyright: © 2014 Cerulo et al.
2014
Istituto di Endocrinologia e Oncologia Sperimentale ''G. Salvatore'' - IEOS
Cell survival; Pax8; Thyroid; Transcription factor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/310114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact