Classification is one of the most useful techniques for extracting meaningful knowledge from databases. Classifiers, e.g. decision trees, are usually extracted from a table of records, each of which represents an example. However, quite often in real applications there is other knowledge, e.g. owned by experts of the field, that can be usefully used in conjunction with the one hidden inside the examples. As a concrete example of this kind of knowledge we consider causal dependencies among the attributes of the data records. In this paper we discuss how to use such a knowledge to improve the construction of classifiers. The causal dependencies are represented via Bayesian Causal Maps (BCMs), and our method is implemented as an adaptation of the well known C4.5 algorithm. Copyright 2005 ACM.
DrC4.5: improving C4.5 by means of prior knowledge
Baglioni M.;Furletti B.;Turini F.
2005
Abstract
Classification is one of the most useful techniques for extracting meaningful knowledge from databases. Classifiers, e.g. decision trees, are usually extracted from a table of records, each of which represents an example. However, quite often in real applications there is other knowledge, e.g. owned by experts of the field, that can be usefully used in conjunction with the one hidden inside the examples. As a concrete example of this kind of knowledge we consider causal dependencies among the attributes of the data records. In this paper we discuss how to use such a knowledge to improve the construction of classifiers. The causal dependencies are represented via Bayesian Causal Maps (BCMs), and our method is implemented as an adaptation of the well known C4.5 algorithm. Copyright 2005 ACM.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_183563-doc_27891.pdf
solo utenti autorizzati
Descrizione: DrC4.5 Improving C4.5 by means of prior knowledge
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
591.95 kB
Formato
Adobe PDF
|
591.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


