Halloysite Clay nanotubes (HNTs) are naturally occurring nanomaterials composed of double layered aluminosilicate minerals with a hollow tubular structure. Due to their interesting structural characteristics, chemically active external and internal surfaces, cheap and abundant availability, HNTs have recently become the subject of research attention as a new type of material for various biological applications, including drug and gene delivery vehicles, cancer cells isolation, bone implants, ultrasound contrast agents, cancer and stem cells isolation and cosmetics. Therefore, assessment of HNT biocompatibility has gained importance to demonstrate its suitability for clinical purposes. In this study, HNTs were densely coated with poly(ethylene glycol) (PEG) and MTT measurements were carried out on two different human cancer cell lines, namely HeLa (cervical cancer) cells and HepG2 (hepatocarcinoma) cells, to quantify the biocompatibility of PEG-coated HNTs as a function of nanotube dosage and incubation time. While noncoated nanotubes exhibited significant concentration- and timedependent toxicity, PEG-coated HNTs resulted fully biocompatible for concentrations up to 0.5 mg/mL and for incubation time up to 72 h, making them suitable candidates for nanomedicine applications.

Highly Improved Cytocompatibility of Halloysite Nanotubes through Polymeric Surface Modification

M Di Paola;P Pisani;F Conversano;S Leporatti;S Casciaro
2015

Abstract

Halloysite Clay nanotubes (HNTs) are naturally occurring nanomaterials composed of double layered aluminosilicate minerals with a hollow tubular structure. Due to their interesting structural characteristics, chemically active external and internal surfaces, cheap and abundant availability, HNTs have recently become the subject of research attention as a new type of material for various biological applications, including drug and gene delivery vehicles, cancer cells isolation, bone implants, ultrasound contrast agents, cancer and stem cells isolation and cosmetics. Therefore, assessment of HNT biocompatibility has gained importance to demonstrate its suitability for clinical purposes. In this study, HNTs were densely coated with poly(ethylene glycol) (PEG) and MTT measurements were carried out on two different human cancer cell lines, namely HeLa (cervical cancer) cells and HepG2 (hepatocarcinoma) cells, to quantify the biocompatibility of PEG-coated HNTs as a function of nanotube dosage and incubation time. While noncoated nanotubes exhibited significant concentration- and timedependent toxicity, PEG-coated HNTs resulted fully biocompatible for concentrations up to 0.5 mg/mL and for incubation time up to 72 h, making them suitable candidates for nanomedicine applications.
2015
Istituto di Fisiologia Clinica - IFC
Istituto di Nanotecnologia - NANOTEC
cytocompatibility; halloysite nanotubes; biomedical materials; nanobiotechnology.
File in questo prodotto:
File Dimensione Formato  
prod_349741-doc_114215.pdf

solo utenti autorizzati

Descrizione: Proceeding pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 684.41 kB
Formato Adobe PDF
684.41 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/310767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact