In this work, an improved membrane characterization, computational fluid dynamic (CFD) simulations of inert particle beds, and simulations of a membrane reactor for Water Gas Shift (WGS) are coupled together to evaluate the concentration polarization distribution along Pd-based membrane reactors. To perform this investigation, first a 3.6 mm-thick Pd75Ag25-membrane is characterized using experimental data from the literature as input to an improved approach allowing the non-ideality of internal diffusion to be quantitatively evaluated as a function of hydrogen partial pressure. Then, CFD simulations of a particle bed composed of regular arrays of mono-disperse spherical particles are carried out, showing that the velocity field between particles and membranes contributes to enhance the mass transfer towards the membrane surface. Finally, after validating a 1D-1D reactor model by literature experimental data in terms of both conversion and recovery index vs. feed pressure, simulations of concentration polarization coefficient (CPC) profiles along the reactor are performed. These profiles allow a clearly identification of the reactor zones where polarization is higher, providing useful information to minimize the polarization influence on reactor performances.

Concentration polarization distribution along Pd-based membrane reactors: A modelling approach applied to Water-Gas Shift

Caravella A;Melone L;Brunetti A;Drioli E;Barbieri G
2016

Abstract

In this work, an improved membrane characterization, computational fluid dynamic (CFD) simulations of inert particle beds, and simulations of a membrane reactor for Water Gas Shift (WGS) are coupled together to evaluate the concentration polarization distribution along Pd-based membrane reactors. To perform this investigation, first a 3.6 mm-thick Pd75Ag25-membrane is characterized using experimental data from the literature as input to an improved approach allowing the non-ideality of internal diffusion to be quantitatively evaluated as a function of hydrogen partial pressure. Then, CFD simulations of a particle bed composed of regular arrays of mono-disperse spherical particles are carried out, showing that the velocity field between particles and membranes contributes to enhance the mass transfer towards the membrane surface. Finally, after validating a 1D-1D reactor model by literature experimental data in terms of both conversion and recovery index vs. feed pressure, simulations of concentration polarization coefficient (CPC) profiles along the reactor are performed. These profiles allow a clearly identification of the reactor zones where polarization is higher, providing useful information to minimize the polarization influence on reactor performances.
2016
Istituto per la Tecnologia delle Membrane - ITM
Concentration polarization
Hydrogen
Membrane reactors
Pd-membranes
Water-Gas Shift
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/310828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact