The unjamming transition of granular systems is investigated in a seismic fault model via three dimensional molecular dynamics simulations. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, allow us to characterize the stick-slip dynamics, consisting in large slips and microslips leading to creep motion. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The susceptibility encodes the magnitude of the incoming microslip.

Unjamming Dynamics: The Micromechanics of a Seismic Fault Model

2010

Abstract

The unjamming transition of granular systems is investigated in a seismic fault model via three dimensional molecular dynamics simulations. A two-time force-force correlation function, and a susceptibility related to the system response to pressure changes, allow us to characterize the stick-slip dynamics, consisting in large slips and microslips leading to creep motion. The correlation function unveils the micromechanical changes occurring both during microslips and slips. The susceptibility encodes the magnitude of the incoming microslip.
2010
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/31113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact