Nanoporous gold is a very promising and novel material platform for mid-infrared and THz plasmonics. Nanoporous gold can be formed by dealloying of Au-Ag alloys, previously grown by means of Ag-Au co-sputtering. The optical response is completely determined by the nanostructural film features, that depends on the initial alloy composition and on the preparation procedure. The behavior of the material in mid-infrared and its peculiar morphology with a very high surface/volume ratio can be applied for nanostructure fabrication, such for example nanoantennas. Here we report the design and fabrication of nanoporous antennas engineered to support resonances in the 1500-1700 cm-1 range where them can be exploited, for example, in the detection of protein conformational states. This novel paradigm points toward the development of a new class of efficient and high-selective biosensors.
Engineered/tailored nanoporous gold structures for infrared plasmonics
Cattarin S;Barison S;
2015
Abstract
Nanoporous gold is a very promising and novel material platform for mid-infrared and THz plasmonics. Nanoporous gold can be formed by dealloying of Au-Ag alloys, previously grown by means of Ag-Au co-sputtering. The optical response is completely determined by the nanostructural film features, that depends on the initial alloy composition and on the preparation procedure. The behavior of the material in mid-infrared and its peculiar morphology with a very high surface/volume ratio can be applied for nanostructure fabrication, such for example nanoantennas. Here we report the design and fabrication of nanoporous antennas engineered to support resonances in the 1500-1700 cm-1 range where them can be exploited, for example, in the detection of protein conformational states. This novel paradigm points toward the development of a new class of efficient and high-selective biosensors.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_349063-doc_115457.pdf
non disponibili
Descrizione: Engineered/Tailored nanoporous gold structures for infrared plasmonics
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.84 MB
Formato
Adobe PDF
|
1.84 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


