Stochastic simulators can effectively generate the intrinsic variability of the rainfall process, which is an important issue in the analysis of the projections uncertainties. In this paper, a procedure for stochastic modeling of precipitation at monthly scale is proposed. The model adopts variable transformations, which are finalized to the deseasonalization and the Gaussianization of the monthly rainfall process, and includes a procedure for testing the autocorrelation. The model was applied to a homogeneous database of monthly rainfall values registered in 12 rain gauges in the region of Calabria (Southern Italy). After the estimation of the model parameters, a set of 10^4 years of monthly rainfall for each rain gauge was generated by means of a Monte Carlo technique. Then, dry and wet periods were analyzed through the application of the standardized precipitation index (SPI). Some results, confirmed through the application of the drought severity index (DSI), showed that the proposed model provided a good representation of the monthly rainfall for the considered rain gauges. Moreover, the results of the SPI application indicate a greater probability of dry conditions than wet conditions, especially when long-term precipitation patterns are considered.

An Analysis of the Occurrence Probabilities ofWet and Dry Periods through a Stochastic Monthly Rainfall Model

T Caloiero;R Coscarelli;
2016

Abstract

Stochastic simulators can effectively generate the intrinsic variability of the rainfall process, which is an important issue in the analysis of the projections uncertainties. In this paper, a procedure for stochastic modeling of precipitation at monthly scale is proposed. The model adopts variable transformations, which are finalized to the deseasonalization and the Gaussianization of the monthly rainfall process, and includes a procedure for testing the autocorrelation. The model was applied to a homogeneous database of monthly rainfall values registered in 12 rain gauges in the region of Calabria (Southern Italy). After the estimation of the model parameters, a set of 10^4 years of monthly rainfall for each rain gauge was generated by means of a Monte Carlo technique. Then, dry and wet periods were analyzed through the application of the standardized precipitation index (SPI). Some results, confirmed through the application of the drought severity index (DSI), showed that the proposed model provided a good representation of the monthly rainfall for the considered rain gauges. Moreover, the results of the SPI application indicate a greater probability of dry conditions than wet conditions, especially when long-term precipitation patterns are considered.
2016
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Istituto per i Sistemi Agricoli e Forestali del Mediterraneo - ISAFOM
monthly rainfall
stochastic model
dry and wet periods
Calabria
File in questo prodotto:
File Dimensione Formato  
prod_345581-doc_108444.pdf

accesso aperto

Descrizione: An Analysis of the Occurrence Probabilities ofWet and Dry Periods through a Stochastic Monthly Rainfall Model
Tipologia: Versione Editoriale (PDF)
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/311696
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 22
social impact