The reactivity of polylactic acid (PLA) with epoxidized natural rubber (ENR50) was confirmed by monitoring the changes in melt viscosity during mixing and by TGA runs. The plasticization resulting from a partial miscibilization of ENR50 during mixing was found to have opposite effects on the crystallization of the PLA matrix, depending on the temperature scanning mode. An increase in heat of crystallization (?Hc) with increasing temperature scanning rate was observed when heated from the glassy state, while a corresponding reduction in ?Hc was obtained in cooling scans from the melt. Studies on the kinetics of events have shown that the classical Kissinger plots for crystallization by heating from the glassy state display a variable activation energy for the case of the reactive blend. The vitrification kinetics, on the other hand, could be modelled quite accurately with the Mahadevan method for all systems, including an intrinsically amorphous PLA.

Thermal transitions and solidifications kinetics of poly(lactic acid) and blends with epoxidized natural rubber

A Vignali;P Russo
2016

Abstract

The reactivity of polylactic acid (PLA) with epoxidized natural rubber (ENR50) was confirmed by monitoring the changes in melt viscosity during mixing and by TGA runs. The plasticization resulting from a partial miscibilization of ENR50 during mixing was found to have opposite effects on the crystallization of the PLA matrix, depending on the temperature scanning mode. An increase in heat of crystallization (?Hc) with increasing temperature scanning rate was observed when heated from the glassy state, while a corresponding reduction in ?Hc was obtained in cooling scans from the melt. Studies on the kinetics of events have shown that the classical Kissinger plots for crystallization by heating from the glassy state display a variable activation energy for the case of the reactive blend. The vitrification kinetics, on the other hand, could be modelled quite accurately with the Mahadevan method for all systems, including an intrinsically amorphous PLA.
2016
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
Crystallization kinetics
De-vitrification
Epoxidized natural rubber
Poly(lactic acid)
Vitrification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/311871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact