The main objective of this research is to develop, test and validate a soil moisture content (SMC) algorithm for GMES Sentinel-1 characteristics. The SMC product, which is to be generated from Sentinel-1 data, requires an algorithm capable of processing operationally in near-real-time and delivering the product to the GMES services within 3. h from observation. An approach based on an Artificial Neural Network (ANN) has been proposed that represents a good compromise between retrieval accuracy and processing time, thus enabling compliance with the timeliness requirements. The algorithm has been tested and subsequently validated in several test areas in Italy, Australia, and Spain.In all cases the validation results were very much in line with GMES requirements (with RMSE generally <. 4%SMC - between 1.67%SMC and 6.68%SMC - and very low bias), except for the case of the test area in Spain, where the validation results were penalized by the availability of only VV polarized SAR images and MODIS low-resolution NDVI. Nonetheless, the obtained RMSE was slightly higher than 4%SMC. © 2013 Elsevier Inc.

Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation

Paloscia S;Pettinato S;Santi E;
2013

Abstract

The main objective of this research is to develop, test and validate a soil moisture content (SMC) algorithm for GMES Sentinel-1 characteristics. The SMC product, which is to be generated from Sentinel-1 data, requires an algorithm capable of processing operationally in near-real-time and delivering the product to the GMES services within 3. h from observation. An approach based on an Artificial Neural Network (ANN) has been proposed that represents a good compromise between retrieval accuracy and processing time, thus enabling compliance with the timeliness requirements. The algorithm has been tested and subsequently validated in several test areas in Italy, Australia, and Spain.In all cases the validation results were very much in line with GMES requirements (with RMSE generally <. 4%SMC - between 1.67%SMC and 6.68%SMC - and very low bias), except for the case of the test area in Spain, where the validation results were penalized by the availability of only VV polarized SAR images and MODIS low-resolution NDVI. Nonetheless, the obtained RMSE was slightly higher than 4%SMC. © 2013 Elsevier Inc.
2013
Istituto di Fisica Applicata - IFAC
Artificial Neural Network
Backscattering coefficient
Inversion algorithms
Sentinel-1
Soil moisture maps
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/312129
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 375
  • ???jsp.display-item.citation.isi??? ND
social impact