We present in this work a first performance assessment of the Parallel Small BAseline Subset (P-SBAS) algorithm, for the generation of Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) deformation maps and time series, which has been migrated to a Cloud Computing (CC) environment. In particular, we investigate the scalable performances of the P-SBAS algorithm by processing a selected ENVISAT ASAR image time series, which we use as a benchmark, and by exploiting the Amazon Web Services (AWS) CC platform. The presented analysis shows a very good match between the theoretical and experimental P-SBAS performances achieved within the CC environment. Moreover, the obtained results demonstrate that the implemented P-SBAS Cloud migration is able to process ENVISAT SAR image time series in short times (less than 7 h) and at low costs (about USD 200). The P-SBAS Cloud scalable performances are also compared to those achieved by exploiting an in-house High Performance Computing (HPC) cluster, showing that nearly no overhead is introduced by the presented Cloud solution. As a further outcome, the performed analysis allows us to identify the major bottlenecks that can hamper the P-SBAS performances within a CC environment, in the perspective of processing very huge SAR data flows such as those coming from the existing COSMO-SkyMed or the upcoming SENTINEL-1 constellation. This work represents a relevant step toward the challenging Earth Observation scenario focused on the joint exploitation of advanced DInSAR techniques and CC environments for the massive processing of Big SAR Data.

A First Assessment of the P-SBAS DInSAR Algorithm Performances Within a Cloud Computing Environment

Casu Francesco a
2015

Abstract

We present in this work a first performance assessment of the Parallel Small BAseline Subset (P-SBAS) algorithm, for the generation of Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) deformation maps and time series, which has been migrated to a Cloud Computing (CC) environment. In particular, we investigate the scalable performances of the P-SBAS algorithm by processing a selected ENVISAT ASAR image time series, which we use as a benchmark, and by exploiting the Amazon Web Services (AWS) CC platform. The presented analysis shows a very good match between the theoretical and experimental P-SBAS performances achieved within the CC environment. Moreover, the obtained results demonstrate that the implemented P-SBAS Cloud migration is able to process ENVISAT SAR image time series in short times (less than 7 h) and at low costs (about USD 200). The P-SBAS Cloud scalable performances are also compared to those achieved by exploiting an in-house High Performance Computing (HPC) cluster, showing that nearly no overhead is introduced by the presented Cloud solution. As a further outcome, the performed analysis allows us to identify the major bottlenecks that can hamper the P-SBAS performances within a CC environment, in the perspective of processing very huge SAR data flows such as those coming from the existing COSMO-SkyMed or the upcoming SENTINEL-1 constellation. This work represents a relevant step toward the challenging Earth Observation scenario focused on the joint exploitation of advanced DInSAR techniques and CC environments for the massive processing of Big SAR Data.
2015
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Algorithms
Cloud computing
Cluster computing
Data flow analysis
Image matching
Image processing
Synthetic aperture radar
Time series
Web services
Algorithm performance
Amazon web services
Cloud computing environments
Differential synthetic aperture radar interferometry (DInSAR)
High-performance computing clusters
Performance assessment
Scalable performance
Small baseline subsets
Distributed computer systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/312187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? ND
social impact